• Title/Summary/Keyword: Structure Tensor

Search Result 199, Processing Time 0.021 seconds

Time-Resolved Infrared Spectroscopy of Molecular Reorientation During FLC Electro-Optic Switching

  • Jang, Won-Gun;Clark, Noel A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1112-1117
    • /
    • 2003
  • Polarized Fourier transform infrared (IR) absorption is used to probe molecular conformation in a ferroelectric liquid crystal (FLC) during the reorientation induced by the external field. Spectra of planar aligned cells of FLC W314 are measured as functions of IR polarizer orientation and electric field applied to the FLC. The time evolution of the dichroism of the absorbance due to biphenyl core and alkyl tail molecular vibration modes, is observed. Static IR dichroism experiments show a W314 dichroism structure in which the principal axis of dielectric tensor from molecular core vibration are tilted further from the smectic layer normal than those of the tail. This structure indicates the effective binding site in which the molecules are confined in the Sm-C phase has, on average, "zig-zag" shape and this zig-zag binding site structure is rigidly maintained while the molecular axis rotates about the layer normal during field-induced switching.

  • PDF

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE FIRST CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • Hwang, In-Ho;Han, Soo-Kyung;Chung, Kyung-Tae
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein 's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the first class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the cases of the second class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

3D Design and Analysis of Cogging Torque in 900kW Permanent Magnet Synchronous Generator (900kW급 영구자석형 동기발전기 3차원 설계 및 코깅 토크 분석)

  • Lee, Sang-Woo;Kim, Tae-Hoon;Kim, Dong-Eon;Chung, Chin-Wha;Park, H.C.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.443-443
    • /
    • 2009
  • Cogging Torque is induced by the magnetic attraction between the rotor mounted permanent magnet(PM) and the stator teeth. This torque is an unwanted effect causing shaft vibration, noises, metal fatigues and increased stator length. A variety of techniques exist to reduce the cogging torque of PM generator. Even though the cogging torque can be vanished by skewing the stator slots by one slot pitch or rotor magnets, manufacturing cost becomes high due to the complicated structure and increased material costs. This paper introduces a new cogging torque reduction technique for PM generators that adjusts the azimuthal positions of the magnets along the circumference. A 900 kW class PMSG model is simulated using a three dimensional finite element method and the resulting cogging torques is analyzed using the Maxwell tensor stress tensor. Using the 3D simulation, the end contribution of the cogging torque is accurately calculated.

  • PDF

Wind-tunnel tests on high-rise buildings: wind modes and structural response

  • Sepe, Vincenzo;Vasta, Marcello
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.37-56
    • /
    • 2014
  • The evaluation of pressure fields acting on slender structures under wind loads is currently performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the knowledge of global and local wind actions is crucial for design purpose. This paper considers a particular slender structure under wind excitation, representative of most common high-rise buildings, whose experimental wind field on in-scale model was measured in the CRIACIV boundary-layer wind tunnel (University of Florence) for several angles of attack of the wind. It is shown that an efficient reduced model to represent structural response can be obtained by coupling the classical structural modal projection with the so called blowing modes projection, obtained by decomposing the covariance or power spectral density (PSD) wind tensors. In particular, the elaboration of experimental data shows that the first few blowing modes can effectively represent the wind-field when eigenvectors of the PSD tensor are used, while a significantly larger number of blowing modes is required when the covariance wind tensor is used to decompose the wind field.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE SECOND CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • HAN, SOO KYUNG;HWANG, IN HO;CHUNG, KYUNG TAE
    • Honam Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6, 7. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the second class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the case of the first class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

  • PDF

Time Series Classification of Cryptocurrency Price Trend Based on a Recurrent LSTM Neural Network

  • Kwon, Do-Hyung;Kim, Ju-Bong;Heo, Ju-Sung;Kim, Chan-Myung;Han, Youn-Hee
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.694-706
    • /
    • 2019
  • In this study, we applied the long short-term memory (LSTM) model to classify the cryptocurrency price time series. We collected historic cryptocurrency price time series data and preprocessed them in order to make them clean for use as train and target data. After such preprocessing, the price time series data were systematically encoded into the three-dimensional price tensor representing the past price changes of cryptocurrencies. We also presented our LSTM model structure as well as how to use such price tensor as input data of the LSTM model. In particular, a grid search-based k-fold cross-validation technique was applied to find the most suitable LSTM model parameters. Lastly, through the comparison of the f1-score values, our study showed that the LSTM model outperforms the gradient boosting model, a general machine learning model known to have relatively good prediction performance, for the time series classification of the cryptocurrency price trend. With the LSTM model, we got a performance improvement of about 7% compared to using the GB model.

ON THE STRUCTURE OF NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon;Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The non-commutative torus $A_{\omega}=C^*(\mathbb{Z}^n,{\omega})$ may be realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega}}$ with fibres $C^*(\mathbb{Z}^n/S_{\omega},{\omega}_1)$ for some totally skew multiplier ${\omega}_1$ on $\mathbb{Z}^n/S_{\omega}$. It is shown that $A_{\omega}{\otimes}M_l(\mathbb{C})$ has the trivial bundle structure if and only if $\mathbb{Z}^n/S_{\omega}$ is torsion-free.

  • PDF

Lightlike Hypersurfaces of an Indefinite Nearly Trans-Sasakian Manifold with an (ℓ, m)-type Connection

  • Lee, Chul Woo;Lee, Jae Won
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.223-238
    • /
    • 2020
  • We study a lightlike hypersurface M of an indefinite nearly trans-Sasakian manifold ${\bar{M}}$ with an (ℓ, m)-type connection such that the structure vector field ζ of ${\bar{M}}$ is tangent to M. In particular, we focus on such lightlike hypersurfaces M for which the structure tensor field F is either recurrent or Lie recurrent, or such that M itself is totally umbilical or screen totally umbilical.

ON THE SPECIAL FINSLER METRIC

  • Lee, Nan-Y
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.457-464
    • /
    • 2003
  • Given a Riemannian manifold (M, $\alpha$) with an almost Hermitian structure f and a non-vanishing covariant vector field b, consider the generalized Randers metric $L\;=\;{\alpha}+{\beta}$, where $\beta$ is a special singular Riemannian metric defined by b and f. This metric L is called an (a, b, f)-metric. We compute the inverse and the determinant of the fundamental tensor ($g_{ij}$) of an (a, b, f)-metric. Then we determine the maximal domain D of $TM{\backslash}O$ for an (a, b, f)-manifold where a y-local Finsler structure L is defined. And then we show that any (a, b, f)-manifold is quasi-C-reducible and find a condition under which an (a, b, f)-manifold is C-reducible.