본 연구의 목표는 확산 광학 단층 촬영에 대한 기준 영상을 사용하여 동질성과 이질성을 분리하기 위한 재구성된 영상들간의 수치적 평가를 위해 구조적 유사성 지수에 기초한 알고리즘을 개발한다. 글로벌 지오메트리 및 관심 영역 평가는 유사성을 산출하기 위해 측정되었으며, 그 결과 구조적 유사성 지수의 평균이 모델 내부에 가시적 포함 여부를 판단할 수 있는 잠재적 성능을 나타낸다는 것을 알 수 있으며, 구조적 유사성 지수는 유방 구조 정보를 평가하기 위한 이미지 평가를 지원 가능한 것으로 확인 되었다.
Similarity index measures the topological proximity of node pairs in a complex network. Numerous similarity indices have been defined and investigated, but the dependency of structure on the performance of similarity indices has not been sufficiently investigated. In this study, we investigated the relationship between the performance of similarity indices and structural properties of a network by employing a two-state random network. A node in a two-state network has binary types that are initially given, and a connection probability is determined from the state of the node pair. The performances of similarity indices are affected by the number of links and the ratio of intra-connections to inter-connections. Similarity indices have different characteristics depending on their type. Local indices perform well in small-size networks and do not depend on whether the structure is intra-dominant or inter-dominant. In contrast, global indices perform better in large-size networks, and some such indices do not perform well in an inter-dominant structure. We also found that link prediction performance and the performance of similarity are correlated in both model networks and empirical networks. This relationship implies that link prediction performance can be used as an approximation for the performance of the similarity index when information about node type is unavailable. This relationship may help to find the appropriate index for given networks.
Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.
Current global textiles and fashion industries have gradually shifted focus to high value-added, high sensibility, and multi-functional products based on new human-friendliness and sustainable growth technologies. Textile design CAD systems have been developed in conjunction with computer hardware and software sector advances. This study compares the patterns or images of actual woven fabrics and virtual fabrics prepared with a textile design CAD system. In this study, several weave structures (such as fancy yarn weave and patterns) were prepared with a shuttle loom. The woven textile images were taken using a CCD camera. The same weave structure data and yarn data were fed into a textile design CAD system in order to simulate fabric images as similarly as possible. Similarity Index analysis methods allowed for an analysis of the index between the actual fabric specimen and the simulated image of the corresponding fabric. The results showed that repeated small pattern weaves provide superior similarity index values than those of a fancy yarn weave that indicate some irregularities due to fancy yarn attributes. A Complex Wavelet Structural Similarity(CW-SSIM) index resulted in a better index than other methods such as Multi-Scale(MS) SSIM, and Feature Similarity(FS) SSIM, across fabric specimen images. A correlation analysis of the similarity index based on an image analysis and a similarity evaluation by panel members was also implemented.
Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
Smart Structures and Systems
/
제23권3호
/
pp.279-293
/
2019
To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.
This paper presents an effective damage detection method for offshore jackets using natural frequency change ratios. Two parameters, cosine similarity and magnitude index, are considered to estimate the location and severity of the damage in the structure. A numerical jacket structure model is considered to verify the performance of the proposed method. As observed through analysis, the damages in the structure are detected accurately.
Multimedia is a ubiquitous and indispensable part of our daily life and learning such as audio, image, and video. Objective and subjective quality evaluations play an important role in various multimedia applications. Blind image quality assessment (BIQA) is used to indicate the perceptual quality of a distorted image, while its reference image is not considered and used. Blur is one of the common image distortions. In this paper, we propose a novel BIQA index for Gaussian blur distortion based on the fact that images with different blur degree will have different changes through the same blur. We describe this discrimination from three aspects: color, edge, and structure. For color, we adopt color histogram; for edge, we use edge intensity map, and saliency map is used as the weighting function to be consistent with human visual system (HVS); for structure, we use structure tensor and structural similarity (SSIM) index. Numerous experiments based on four benchmark databases show that our proposed index is highly consistent with the subjective quality assessment.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권1호
/
pp.257-271
/
2016
The Structural SIMilarity (SSIM) index is one of the most widely-used methods for perceptual image quality assessment (IQA). It is based on the principle that the human visual system (HVS) is sensitive to the overall structure of an image. However, it has been reported that indices predicted by SSIM tend to be biased depending on the type of distortion, which increases the deviation from the main regression curve. Consequently, SSIM can result in serious performance degradation. In this study, we investigate the aforementioned phenomenon from a new perspective and review a constant that plays a big role within the SSIM metric but has been overlooked thus far. Through an experimental study on the influence of this constant in evaluating images with SSIM, we are able to propose a new solution that resolves this issue. In the proposed IQA method, we first design a system to classify different types of distortion, and then match an optimal constant to each type. In addition, we supplement the proposed method by adding color perception-based structural information. For a comprehensive assessment, we compare the proposed method with 15 existing IQA methods. The experimental results show that the proposed method is more consistent with the HVS than the other methods.
강원도 가리산 일대 천연활엽수림을 대상으로 산림의 구조적 변화에 영향을 미칠 것으로 고려되는 지형적 위치와 사면방위에 따라 군집을 분류하고, 표본구 조사법에 의하여 군집 구조적 속성을 분석, 비교한 결과는 다음과 같다. 1. 계곡지역을 제외한 산복과 능선지역의 상층임관에서는 신갈나무의 세력이 가장 높게 나타났으나, 계곡지역에서 가장 높은 상대우점도를 보이는 가래나무, 능선지역에서만 높은 세력을 보이는 소나무 등에 의해 지형적 위치별 산림군집간 수종구성의 차이가 큰 것으로 파악되었다. 모든 사면방위 산림군집에서는 신갈나무가 가장 높은 상대우점도를 보이고 있으며, 공통적인 우점종들이 많이 나타나고 있어 지형적 위치별 산림군집들에 비해 수종구성의 변이가 크지 않은 것으로 파악되었다. 2. 상층임관에서는 산복지역의 종다양도가 1.96으로 가장 높았으나, 중층과 하층임관에서는 계곡지역의 종다양도가 각각 2.66, 2.77로 가장 높게 나타났다. 능선지역은 낮은 종풍부성과 균재성에 의해 모든 수관층에서 종다양도가 낮은 것으로 파악되었다. 사면방위에 따라서는 북동지역이 모든 수관층에서 가장 높은 것으로 파악되었으며, 군집간 종다양도의 변이 역시 지형적 위치별 산림군집이 사면방위 군집에 비해 큰 것으로 나타났다 3. 지형적 위치별 산림군집간 유사도는 산복과 능선지역이 가장 높게, 계독과 능선지역이 가장 낮게 산출되었으나, 전반적으로 유사도 수치가 낮아 산림군집간에는 구조적 차이가 큰 것으로 파악되었다. 반면에, 사면방위별 산림군집들은 전체 산림지역과의 유사도 뿐만 아니라 상호간의 군집간 유사도가 높은 것으로 파악되었다.
현재까지 인간 시각 체계를 정확하게 반영하기 위한 이미지 평가 기법에 대한 연구가 많이 이루어져 오고 있다. SSIM은 인간의 시각 체계가 이미지의 구조적 정보에 예민하다는 점을 이용하여 구조적 정보를 이용하여 이미지를 평가하는 대표적인 인간 시각 체계를 만족시키는 평가 기법이다. 하지만 SSIM은 이미지의 색 차이를 반영하지 못하는 문제가 있다. 이러한 문제를 해결하기 위해, HSI 색 공간을 활용한 SHSIM 기법이 제안되었으나 두 컬러 이미지 간 인지적 색 차이를 충분히 반영하지는 못하고 있다. 본 논문에서는 CIE Lab 색 공간을 도입하여 대응 되는 픽셀들의 인지적 색 차이를 계산하여 이미지 평가에 활용하는 방법을 제안한다. 그리고 연구를 더 확장하여, SVM 분류기를 활용하여 왜곡 종류에 따라 최적의 평가 수식을 적용하는 최적화 시스템을 제안한다. 제안하는 기법을 평가하기 위해, 이미지 평가분야에서 가장 많이 알려진 LIVE 데이터베이스를 사용하였으며 네 종류의 평가 기준들을 이용하였다. 실험 결과에서는 제안하는 기법이 다른 기법들보다 인간 시각 체계와 더 상관성이 높다는 것을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.