DOI QR코드

DOI QR Code

A Study on the Performance of Similarity Indices and its Relationship with Link Prediction: a Two-State Random Network Case

  • Ahn, Min-Woo (Department of Physics, Pohang University of Science and Technology) ;
  • Jung, Woo-Sung (Department of Physics, Pohang University of Science and Technology)
  • Received : 2018.09.06
  • Accepted : 2018.09.21
  • Published : 2018.11.30

Abstract

Similarity index measures the topological proximity of node pairs in a complex network. Numerous similarity indices have been defined and investigated, but the dependency of structure on the performance of similarity indices has not been sufficiently investigated. In this study, we investigated the relationship between the performance of similarity indices and structural properties of a network by employing a two-state random network. A node in a two-state network has binary types that are initially given, and a connection probability is determined from the state of the node pair. The performances of similarity indices are affected by the number of links and the ratio of intra-connections to inter-connections. Similarity indices have different characteristics depending on their type. Local indices perform well in small-size networks and do not depend on whether the structure is intra-dominant or inter-dominant. In contrast, global indices perform better in large-size networks, and some such indices do not perform well in an inter-dominant structure. We also found that link prediction performance and the performance of similarity are correlated in both model networks and empirical networks. This relationship implies that link prediction performance can be used as an approximation for the performance of the similarity index when information about node type is unavailable. This relationship may help to find the appropriate index for given networks.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. P. Onnela et al., Proc. Natl. Acad. Sci. 104, 7332 (2007). https://doi.org/10.1073/pnas.0610245104
  2. A. L. Barabasi et al., Phys. A: Stat. Mech. its Appl. 311, 590 (2002). https://doi.org/10.1016/S0378-4371(02)00736-7
  3. M. E. J. Newman, Proc. Natl. Acad. Sci. 98, 404 (2001). https://doi.org/10.1073/pnas.98.2.404
  4. R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt and A. Arenas, Phys. Rev. E 68, 065103 (2003). https://doi.org/10.1103/PhysRevE.68.065103
  5. R. N. Mantegna, Eur. Phys. J. B 11, 193 (1999).
  6. G. Bonanno, G. Caldarelli, F. Lillo and R. N. Mantegna, Phys. Rev. E 68, 046130 (2003). https://doi.org/10.1103/PhysRevE.68.046130
  7. D. A. Fell and A. Wagner, Nat. biotechnology 18, 1121 (2000). https://doi.org/10.1038/81025
  8. I. Farkas, H. Jeong, T. Vicsek, A. L. Barabasi and Z. N. Oltvai, Phys. A: Stat. Mech. its Appl. 318, 601 (2003). https://doi.org/10.1016/S0378-4371(02)01731-4
  9. R. Albert, H. Jeong and A. L. Barabasi, Nature 401, 130 (1999) https://doi.org/10.1038/43601
  10. A. Broder et al., Comput. networks 33, 309 (2000). https://doi.org/10.1016/S1389-1286(00)00083-9
  11. D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998). https://doi.org/10.1038/30918
  12. M. E. J. Newman, SIAM review 45, 167 (2003). https://doi.org/10.1137/S003614450342480
  13. R. Albert and A. L. Barabsi, Rev. of Mod. Phys. 74, 47 (2002). https://doi.org/10.1103/RevModPhys.74.47
  14. L. C. Freeman, Sociometry, 35 (1977).
  15. S. Brin and L. Page, Computer networks and ISDN systems 30, 107 (1998). https://doi.org/10.1016/S0169-7552(98)00110-X
  16. E. A. Leicht, P. Holme and M. E. J. Newman, Phys. Rev. E 73, 026120 (2006). https://doi.org/10.1103/PhysRevE.73.026120
  17. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai and A-L. Barabasi, Science 97, 1551 (2002).
  18. D. Liben-Nowell and J. Kleinberg, J. Am. Soc. Inf. Sci. Technol. 58, 1019 (2007). https://doi.org/10.1002/asi.20591
  19. L. Lu and T. Zhou, Phys. A: Stat. Mech. its Appl 390, 1150 (2011). https://doi.org/10.1016/j.physa.2010.11.027
  20. H. Chen, X. Li and Z. Huang, in Proceedings of the 5th ACM/IEEE-CS Joint Conference on. IEEE (2005).
  21. L. Lu et al., Physics Reports 519, 1 (2012). https://doi.org/10.1016/j.physrep.2012.02.006
  22. M. E. J. Newman, Phys. Rev. E 64, 025102 (2001). https://doi.org/10.1103/PhysRevE.64.025102
  23. L. A. Adamic and E. Adar, Social networks 25, 211 (2003). https://doi.org/10.1016/S0378-8733(03)00009-1
  24. T. Zhou, L. Lu and Y. C. Zhang, Eur. Phys. J. B 71, 623 (2009). https://doi.org/10.1140/epjb/e2009-00335-8
  25. T. Sorensen, Biol. Skr 5, 1 (1948).
  26. G. Jeh and J. Widom, in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002), p. 271.
  27. L. Katz, Psychmetrika 18, 39 (1953). https://doi.org/10.1007/BF02289026
  28. A. Clauset, C. Moore and M. E. J. Newman, Nature 453, 98 (2008). https://doi.org/10.1038/nature06830
  29. T. Fawcett, Pattern Recognit. Lett. 27, 861 (2006). https://doi.org/10.1016/j.patrec.2005.10.010
  30. W. W. Zachary, J. Anthropol. Res. 33, 452 (1977). https://doi.org/10.1086/jar.33.4.3629752
  31. M. E. J. Newman, Phys. Rev. E 74, 036104 (2006). https://doi.org/10.1103/PhysRevE.74.036104
  32. M. W. Ahn and W. S. Jung, Phys. A: Stat. Mech. its Appl. 429, 177 (2015). https://doi.org/10.1016/j.physa.2015.01.083