• Title/Summary/Keyword: Structural proteomics

Search Result 37, Processing Time 0.028 seconds

Structure-based Functional Discovery of Proteins: Structural Proteomics

  • Jung, Jin-Won;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • The discovery of biochemical and cellular functions of unannotated gene products begins with a database search of proteins with structure/sequence homologues based on known genes. Very recently, a number of frontier groups in structural biology proposed a new paradigm to predict biological functions of an unknown protein on the basis of its three-dimensional structure on a genomic scale. Structural proteomics (genomics), a research area for structure-based functional discovery, aims to complete the protein-folding universe of all gene products in a cell. It would lead us to a complete understanding of a living organism from protein structure. Two major complementary experimental techniques, X-ray crystallography and NMR spectroscopy, combined with recently developed high throughput methods have played a central role in structural proteomics research; however, an integration of these methodologies together with comparative modeling and electron microscopy would speed up the goal for completing a full dictionary of protein folding space in the near future.

Structural Basis of the Disease-related Proteins: Target Oriented Structural Proteomics

  • Jinho Moon;Heo, Yong-Suk;Kim, Young-Kwan;Kim, Hye-Yeon;Park, Min-Hye;Hwang, Kwang-Yeon
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.15-15
    • /
    • 2003
  • To discover new drugs more quickly and more efficiently, pharmaceutical companies and biotechnology firms are increasingly turning to the genomics and the structural proteomics technologies. Structural-proteomics can provide a foundation for this through the determination and analysis for protein structure on a genomics scale. Among many structures determined by CGI, we will present with the representative examples drawn from our work on novel structures or complex structures of the disease-related proteins. The alpha subunit of Hypoxia-inducible factor (HIF) is targeted for degradation under normoxic conditions by an ubiquitin-ligase complex that recognizes a hydroxylated proline residue in HIF. Hydroxylation is catalysed by HIF prolyl 4-hydroxylases (HIFPH) which are fe(II) and 2-oxoglutarate (2-OG) dependent oxygenases. Here, we discuss the first crystal structure of the catalytic domain of HIFPH in complexes, with the Fe(II)/2-OG at 1.8Å. These structures suggest that the Ll region (residues 236-253), which is also conserved in mammals, form a 'lid' that closes over the active site. The structural and mutagenesis analyses allow us to provide a focus for understanding cellular responses to hypoxia and a target for the therapeutic manipulation.

  • PDF

Structural Basis of the Disease-related Proteins: Target Oriented Structural Proteomics

  • Hwang, Kwang-Yeon;Lee, Tae-Gyu;Kim, Jin-Hwan;Jeon, Young-Ho;Seonggu Ro;Cho, Joong-Myung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.28-28
    • /
    • 2003
  • To discover new drugs more quickly and more efficiently, pharmaceutical companies and biotechnology firms are increasingly turning to the genomics and the structural proteomics technologies. Structural-proteomics can provide a foundation for this through the determination and analysis for protein structure on a genomics scale. Among many structures determined by CGI, we will present with the representative examples drawn from our work on novel structures or complex structures of the disease-related proteins. The alpha subunit of Hypoxia-inducible factor (HIF) is targeted for degradation under normoxic conditions by an ubiquitin-ligase complex that recognizes a hydroxylated proline residue in HIF, Hydroxylation is catalysed by HIF prolyl 4-hydroxylases (HIFPH) which are Fe(II) and 2-oxoglutarate (2-OG) dependent oxygenases. Here, we discuss the first crystal structure of the catalytic domain of HIFPH in complexes, with the Fe(II)/2-OG at 1.8 ${\AA}$. These structures suggest that the L1 region (residues 236-253), which is also conserved in mammals, form a ‘lid’ that closes over the active site. The structural and mutagenesis analyses allow us to provide a focus for understanding cellular responses to hypoxia and a target for the therapeutic manipulation.

  • PDF

Structural Insights for β-Lactam Antibiotics

  • Dogyeoung, Kim;Sumin, Kim;Yongdae, Kwon;Yeseul, Kim;Hyunjae, Park;Kiwoong, Kwak;Hyeonmin, Lee;Jung Hun, Lee;Kyung-Min, Jang;Donghak, Kim;Sang Hee, Lee;Lin-Woo, Kang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.141-147
    • /
    • 2023
  • Antibiotic resistance has emerged as a global threat to modern healthcare systems and has nullified many commonly used antibiotics. β-Lactam antibiotics are among the most successful and occupy approximately two-thirds of the prescription antibiotic market. They inhibit the synthesis of the peptidoglycan layer in the bacterial cell wall by mimicking the D-Ala-D-Ala in the pentapeptide crosslinking neighboring glycan chains. To date, various β-lactam antibiotics have been developed to increase the spectrum of activity and evade drug resistance. This review emphasizes the three-dimensional structural characteristics of β-lactam antibiotics regarding the overall scaffold, working mechanism, chemical diversity, and hydrolysis mechanism by β-lactamases. The structural insight into various β-lactams will provide an in-depth understanding of the antibacterial efficacy and susceptibility to drug resistance in multidrug-resistant bacteria and help to develop better β-lactam antibiotics and inhibitors.

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.

A proteomic approach to identify of yeast proteins that related with accumulation of misfolded protein in cell

  • Shin, Yong-Seung;Seo, Eun-Joo;Kim, Joon;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.64-64
    • /
    • 2003
  • In growing number of diseases it has been shown that the aggregation of specific proteins has an important role in the pathogenesis of the disorder. This has been demonstrated in structural detail with the liver cirrhosis of ${\alpha}$$_1$-antitrypsin deficiency, and it is now believed that similar protein aggregation underlies many neurodegenerative disorders such as autosomal dominant Parkinson disease, prion diseases, Alzheimer disease, Huntington disease.

  • PDF

A proteomic approach to identify yeast proteins responding to accumulation of misfolded proteins inside the cells

  • Shin, Yong-Seung;Seo, Eun-Joo;Kim, Joon;Yu, Myeong-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.57-57
    • /
    • 2003
  • In growing number of diseases it has been shown that aggregation of specific proteins has an important role in pathogenesis of the disorder. This has been demonstrated in structural details with the liver cirrhosis of ${\alpha}$$_1$-antitrypsin deficiency, and it is now believed that similar protein aggregation underlies many neurodegenerative disorders such as autosomal dominant Parkinson disease, prion diseases, Alzheimer disease, and Huntington disease. ${\alpha}$$_1$-Antieypsin, a member of serine pretense inhibitor (serpin) family, functions as an inhibitor of neutrophil elastase.

  • PDF