Acknowledgement
This work was supported by the project 'Development of biomedical materials based on marine proteins' (Project No. 20170305) funded by the Ministry of Oceans and Fisheries, Korea (J.-H.L.). This work was supported by the Bio & Medical Technology Development Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (NRF-2017M3A9E4078014 and NRF-2017M3A9E4078017).
References
- Bahr, G., Gonzalez, L. J. and Vila, A. J. (2021) Metallo-beta-lactamases in the age of multidrug resistance: from structure and mechanism to evolution, dissemination, and inhibitor design. Chem. Rev. 121, 7957-8094. https://doi.org/10.1021/acs.chemrev.1c00138
- Behzadi, P., Garcia-Perdomo, H. A., Karpinski, T. M. and Issakhanian, L. (2020) Metallo-ss-lactamases: a review. Mol. Biol. Rep. 47, 6281-6294. https://doi.org/10.1007/s11033-020-05651-9
- Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Burgmann, H., Sorum, H., Norstrom, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F. and Martinez, J. L. (2015) Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310-317. https://doi.org/10.1038/nrmicro3439
- Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. and Piddock, L. J. (2015) Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42-51. https://doi.org/10.1038/nrmicro3380
- Breijyeh, Z., Jubeh, B. and Karaman, R. (2020) Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25, 1340.
- Bush, K. and Bradford, P. A. (2019) Interplay between beta-lactamases and new beta-lactamase inhibitors. Nat. Rev. Microbiol. 17, 295-306. https://doi.org/10.1038/s41579-019-0159-8
- Chen, Y., Zhang, W., Shi, Q., Hesek, D., Lee, M., Mobashery, S. and Shoichet, B. K. (2009) Crystal structures of penicillin-binding protein 6 from Escherichia coli. J. Am. Chem. Soc. 131, 14345-14354. https://doi.org/10.1021/ja903773f
- Crowder, M. W., Spencer, J. and Vila, A. J. (2006) Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res. 39, 721-728. https://doi.org/10.1021/ar0400241
- de Kraker, M. E., Stewardson, A. J. and Harbarth, S. (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 13, e1002184.
- Goffin, C. and Ghuysen, J. M. (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62, 1079-1093. https://doi.org/10.1128/MMBR.62.4.1079-1093.1998
- Greenfield, K. G., Badovinac, V. P., Griffith, T. S. and Knoop, K. A. (2021) Sepsis, cytokine storms, and immunopathology: the divide between neonates and adults. Immunohorizons 5, 512-522.. https://doi.org/10.4049/immunohorizons.2000104
- Hou, C. D., Liu, J. W., Collyer, C., Mitic, N., Pedroso, M. M., Schenk, G. and Ollis, D. L. (2017) Insights into an evolutionary strategy leading to antibiotic resistance. Sci. Rep. 7, 40357.
- Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., Kariuki, S., Bhutta, Z. A., Coates, A., Bergstrom, R., Wright, G. D., Brown, E. D. and Cars, O. (2013) Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057-1098. https://doi.org/10.1016/S1473-3099(13)70318-9
- Lee, J. H., Park, K. S., Karim, A. M., Lee, C. R. and Lee, S. H. (2016) How to minimise antibiotic resistance. Lancet Infect. Dis. 16, 17-18.
- Mancuso, G., Midiri, A., Gerace, E. and Biondo, C. (2021) Bacterial antibiotic resistance: the most critical pathogens. Pathogens 10, 1310.
- Naas, T., Oueslati, S., Bonnin, R. A., Dabos, M. L., Zavala, A., Dortet, L., Retailleau, P. and Iorga, B. I. (2017) Beta-lactamase database (BLDB) - structure and function. J. Enzyme Inhib. Med. Chem. 32, 917-919. https://doi.org/10.1080/14756366.2017.1344235
- Ozturk, H., Ozkirimli, E. and Ozgur, A. (2015) Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models. PLoS One 10, e0117874.
- Palacios, A. R., Mojica, M. F., Giannini, E., Taracila, M. A., Bethel, C. R., Alzari, P. M., Otero, L. H., Klinke, S., Llarrull, L. I., Bonomo, R. A. and Vila, A. J. (2019) The reaction mechanism of metallo-beta-lactamases is tuned by the conformation of an active-site mobile loop. Antimicrob. Agents Chemother. 63, e01754-18.
- Park, Y. S., Kim, T. Y., Park, H., Lee, J. H., Nguyen, D. Q., Hong, M. K., Lee, S. H. and Kang, L. W. (2020) Structural study of metal binding and coordination in ancient metallo-beta-lactamase PNGM-1 variants. Int. J. Mol. Sci. 21, 4926.
- Paterson, D. L., Isler, B. and Stewart, A. (2020) New treatment options for multiresistant gram negatives. Curr. Opin. Infect. Dis. 33, 214-223. https://doi.org/10.1097/QCO.0000000000000627
- Sauvage, E., Duez, C., Herman, R., Kerff, F., Petrella, S., Anderson, J. W., Adediran, S. A., Pratt, R. F., Frere, J. M. and Charlier, P. (2007) Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. J. Mol. Biol. 371, 528-539. https://doi.org/10.1016/j.jmb.2007.05.071
- Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A. and Charlier, P. (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32, 234-258. https://doi.org/10.1111/j.1574-6976.2008.00105.x
- Silver, L. L. (2016) Appropriate targets for antibacterial drugs. Cold Spring Harb. Perspect. Med. 6, a030239.
- Vollmer, W., Blanot, D. and de Pedro, M. A. (2008) Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149-167. https://doi.org/10.1111/j.1574-6976.2007.00094.x
- Yan, Y. H., Li, G. and Li, G. B. (2020) Principles and current strategies targeting metallo-beta-lactamase mediated antibacterial resistance. Med. Res. Rev. 40, 1558-1592. https://doi.org/10.1002/med.21665