References
- Abola, E., Kuhn, P., Earnest, T. and Stevens, R. C. (2000) Automation of X-ray crystallography. Nat. Struct. Biol. 7, Suppl, 973-977. https://doi.org/10.1038/80754
- Boggon, T. J., Shan, W. S., Santagata, S., Myers, S. C. and Shapiro, L. (1999) Implication of tubby proteins as transcription factors by structure-based functional analysis. Science 286, 2119-2125. https://doi.org/10.1126/science.286.5447.2119
- Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Savchenko1, A., Cort, J. R., Booth, V., Mackereth, C. D., Saridakis, V., Ekiel, I. et al. (2000) Structural proteomics of an archaeon. Nat. Struc. Biol. 7, 903-909. https://doi.org/10.1038/82823
- Fernandez, C., Adeishvili, K. and Wuthrich, K. (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles Proc. Natl. Acad. Sci. USA 98, 2358-2363. https://doi.org/10.1073/pnas.051629298
- Fowler, C. A., Tian, F., Al-Hashimi, H. M. and Prestegard, J. H. (2000) Rapid determination of protein folds using residual dipolar couplings. J. Mol. Biol. 304, 447-460. https://doi.org/10.1006/jmbi.2000.4199
- Garrett, D. S., Seok, Y. J., Peterkofsky, A., Gronenborn, A. M. and Clore, G. M. (1999) Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat. Struct. Biol. 6, 166-173. https://doi.org/10.1038/5854
- Goldsmith-Fischman, S. and Honig, B. (2003) Structural genomics: computational methods for structure analysis. Protein Sci. 12, 1813-1821. https://doi.org/10.1110/ps.0242903
- Goto, N. K. and Kay, L. E. (2000) New development in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585-592. https://doi.org/10.1016/S0959-440X(00)00135-4
- Greenfield, N. J., Huang, Y. J., Palm, T., Swapna, G. V., Monleon, D., Montelione, G. T. and Hitchcock-DeGregori, S. E. (2001) Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. J. Mol. Biol. 312, 833-847. https://doi.org/10.1006/jmbi.2001.4982
- Guntert, P., Salzmann, M., Braun, D. and Wuthrich, K. (2000) Sequence-specific NMR assignment of proteins by global fragment mapping with the program MAPPER. J. Biomol. NMR 18, 129-137. https://doi.org/10.1023/A:1008318805889
- Henderson, R. (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unconstrained biological molecules. Q. Rev. Biophys. 28, 171-193. https://doi.org/10.1017/S003358350000305X
- Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899-929. https://doi.org/10.1016/S0022-2836(05)80271-2
- Herrmann, T., Guntert, P. and Wuthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209-227. https://doi.org/10.1016/S0022-2836(02)00241-3
- Huang, L., Hung, L., Odell, M., Yokota, H., Kim, R. and Kim, S-. H. (2002) Structure-based experimental confirmation of biochemical function to a methyltransferase, MJ0882, from hyperthermophile Methanococcus jannaschii. J. Struct. Funct. Genomics 2, 121-127. https://doi.org/10.1023/A:1021279113558
- Hui, R. and Edwards, A. (2003) High-throughput protein crystallization J. Struct. Biol. 142, 154-161. https://doi.org/10.1016/S1047-8477(03)00046-7
- Hwang, K. Y., Chung, J. H., Kim, S. H., Han, Y. S. and Cho, Y. (1999) Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat. Struct. Biol. 6, 691-696. https://doi.org/10.1038/10745
- Jung, J. -W., An, J. -H., Na, K. -B., Kim, Y. S. and Lee, W. (2000) Active site and substrate binding mode of malonyl-coa synthetase determined by trandsfered nuclear overhauser effect spectroscopy, site directed mutagenesis and comparative modeling studies. Protein Sci. 9, 1294-1303. https://doi.org/10.1110/ps.9.7.1294
- Karain, W. I., Bourenkov, G. P., Blume, H. and Bartunik, H. D. (2002) Automated mounting, centering and screening of crystals for high-throughput protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 58, 1519-1522. https://doi.org/10.1107/S0907444902012751
- Kigawa, T., Muto, Y. and Yokoyama, S. (1995) Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J. Biomol. NMR 6, 129-134.
- Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T. and Yokoyama, S. (1999) Cell-free production and stableisotope labeling of milligram-quantities of proteins. FEBS Lett. 442, 15-19. https://doi.org/10.1016/S0014-5793(98)01620-2
- Kim, S.-H. (1998) Shining light on structural genomics. Nat. Struc. Biol. 5, 643-645. https://doi.org/10.1038/1334
- Lee, C. -H., Jung, J. -W., Yee, A., Arrowsmith, C. H. and Lee, W. (2004) Solution Structure of a novel calcium binding protein, mth1880 from methanobacterium thermoautotrophicum. Protein Sci. in press.
- Medek, A., Olejniczak, E. T., Meadows, R. P. and Fesik, S. W. (2000) An approach for high-throughput structure determination of proteins by NMR spectroscopy. J. Biomol. NMR 8, 229-238.
- Montelione, G. T., Zheng, D., Huang, Y. J., Gunsalus, K. C. and Szyperski, T. (2000) Protein NMR spectroscopy in structural genomics. Nat. Struct. Biol. 7 Supl, 982-985. https://doi.org/10.1038/80768
- Moseley, H. N. B. and Montelione, G. T. (1999) Automated analysis of NMR assignments and structures for proteins. Curr. Opin. Struct. biol. 9, 635-642. https://doi.org/10.1016/S0959-440X(99)00019-6
- Mumenthaler, C., Guntert, P., Braun, W. and Wuthrich, K. (1997) Automated combined assignment of NOESY spectra and threedimensional protein structure determination. J. Biomol. NMR 10, 351-362. https://doi.org/10.1023/A:1018383106236
- Nilges, M., Macias, M. C., ODonoghue, S. I. and Oschkinat, H. (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from alpha-spectrin. J. Mol. Biol. 269, 408-422. https://doi.org/10.1006/jmbi.1997.1044
-
Nogales, E., Wolf, S. G. and Downing, K. H. (1998) Structure of the
$\alpha$ ,$\beta$ tubulin dimer by electron crystallography. nature 391, 199-203 https://doi.org/10.1038/34465 - O'Connell, J. F., Pryor, K. D., Grant, S. K. and Leiting, B. (1999) A high quality nuclear magnetic resonance solution structure of peptide deformylase from Escherichia coli: application of an automated assignment strategy using GARANT. J. Biomol. NMR 13, 311-324. https://doi.org/10.1023/A:1008311502626
- Pervushin. K., Riek, R., Wider., G. and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipoledipole coupling and chemical shift anisotropy indicates an venue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366-12371. https://doi.org/10.1073/pnas.94.23.12366
- Rockel, B., Peters, J., Kuhlmorgen, B., Glaeser, R. M. and Baumeister, W. (2002) A giant protease with a twist: the TPP II complex from Drosophila studied by electron microscopy. EMBO J. 21, 5979-5984.
- Rosen, M. K., Gardner, K. H., Willis, R. C., Parris, W. E., Pawson, T. and Kay, L. E. (1996) Selective methyl group protonation of perdeuterated proteins. J. Mol. Biol. 263, 627-636. https://doi.org/10.1006/jmbi.1996.0603
- Rupp, B. (2003) High-throughput crystallography at an affordable cost: The TB structural genomics consortium crystallization facility, Acc. Chem. Res. 36, 173-181 https://doi.org/10.1021/ar020021t
- Sali, A., Glaeser, R., Earnest, T. and Baumeister, W. (2003) From words to literature in structural proteomics Nature 422, 216-225. https://doi.org/10.1038/nature01513
- Sanchez, R., Pieper, U., Melo, F., Eswar, N., Marti-Renom, M. A., Madhusudhan, M. S., Mirkovic, N. and Sali, A. (2000) Protein structure modeling for structural genomics. Nat. Struct. Biol. 7 Suppl, 986-990. https://doi.org/10.1038/80776
- Schmid, M. B. (2002) Structural proteomics: the potential of highthroughput structure determination. Trends Microbiol. 10, S27-31. https://doi.org/10.1016/S0966-842X(02)02443-5
- Service, R. F. (1998) NMR researchers look to the next generation of machines. Science 279, 1127-1128. https://doi.org/10.1126/science.279.5354.1127
- Staunton, D., Owen, J. and Campbell, I. D. (2003) NMR and structural genomics. Acc. Chem. Res. 36, 207-214. https://doi.org/10.1021/ar010119s
- Terwilliger, T. C. (2003) Automated structure solution, density modification and model building. Acta Crystallogr. D. Biol. Crystallogr. 58, 1937-1940.
- Tjandra, N., Omichinski, J. G., Gronenborn, A. M., Clore, G. M. and Bax, A. (1997) Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732-738. https://doi.org/10.1038/nsb0997-732
- Wagner, G. (1993) Prospects for NMR of large proteins. J. Biomol. NMR 3, 375-385.
- Yamazaki, T., Otomo, T., Oda, N., Kyogoku, Y., Uegaki, K., Ito, N., Ishino, Y. and Nakamura, H. (1998) Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc. 120, 5591-5592. https://doi.org/10.1021/ja980776o
- Yee, A., Chang, X., Pineda-Lucena, A., Wu, B., Semesi, A., Le B, Ramelot, T., Lee, G. M., Bhattacharyya, S., Gutierrez, P. et al. (2002) An NMR approach to structural proteomics Proc. Natl. Acad. Sci. USA 99, 1825-1830. https://doi.org/10.1073/pnas.042684599
- Yee, A., Pardee, K., Christendat, D., Savchenko, A., Edwards, A. M. and Arrowsmith, C. H. (2003) Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. Acc. Chem. Res. 36, 183-189. https://doi.org/10.1021/ar010126g
- Zarembinski, T. I., Hung, L. W., Mueller-Dieckmann, H. J., Kim, K. K., Yokota, H., Kim, R. and Kim, S. H. (1998) Structurebased assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc. Natl. Acad. Sci. USA 95, 15189-15193. https://doi.org/10.1073/pnas.95.26.15189
- Zhang, P., Beatty, A., Milne, J. L. and Subramaniam, S. (2001) Automated data collection with a Tecnai 12 electron microscope: applications for molecular imaging by cryomicroscopy. J. Struct. Biol. 135, 251-261. https://doi.org/10.1006/jsbi.2001.4404
Cited by
- Tackling the plant proteome: practical approaches, hurdles and experimental tools vol.39, pp.5, 2004, https://doi.org/10.1111/j.1365-313X.2004.02182.x
- Structural proteomics by NMR spectroscopy vol.5, pp.4, 2008, https://doi.org/10.1586/14789450.5.4.589
- Recent applications of protein crystallography and structure-guided drug design vol.9, pp.4, 2005, https://doi.org/10.1016/j.cbpa.2005.06.007
- Backbone 1H, 15N, and 13C Resonance Assignment of HP1242 from Helicobacter pylori vol.38, pp.5, 2005, https://doi.org/10.5483/BMBRep.2005.38.5.591
- Importance of RNA secondary structure information for yeast donor and acceptor splice site predictions by neural networks vol.30, pp.1, 2006, https://doi.org/10.1016/j.compbiolchem.2005.10.009
- The use of proteomics to identify novel therapeutic targets for the treatment of disease vol.59, pp.5, 2007, https://doi.org/10.1211/jpp.59.5.0001