• Title/Summary/Keyword: Structural optimization design

Search Result 1,612, Processing Time 0.028 seconds

Structural Optimization of the Knuckle Crane Installed in Truck (트럭 장착용 너클크레인의 경량화를 위한 구조)

  • Lim, Hun-Bong;Shin, Moon-Kyun;Yang, Hyun-Ik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.344-348
    • /
    • 2012
  • The knuckle crane design in Korea has been performed by assuming a cantilever beam type structure and numerically analyzing design data and finally improving the stiffness by replacing material. In our study, a complete finite element model of the knuckle crane is constructed and finite element analysis is conducted using Optistruct. Structural optimization to reduce the weight of the knuckle crane is processed by applying maximum loading condition at the largest radius of motion, which is the worst case of loading condition. As the results, existing over stiff design in a knuckle crane is corrected to meet a desired design limit and overall weight is reduced, which eventually leads to a reduction of $CO_2$ emission.

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.

Structural Optimization Using Equivalent Static Loads and Substructure Synthesis Method (등가정하중법과 부분구조합성법을 이용한 구조최적설계)

  • Choi, Wook Han;Na, Yoo Sang;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.823-830
    • /
    • 2015
  • Structural optimization pursues improved performance of structures. Nowadays, structural optimization is applied to the design of huge and complex structures such as an airplane. As the number of the finite elements is increased, the analysis solution becomes more accurate. However, the design cost using the finite element model is significantly increased. The component mode synthesis method that is using the substructure synthesis method is frequently employed in order to keep the accuracy and reduce the cost. A new design method for structural optimization is proposed to reduce the design cost and to consider the dynamic effect of the structure. The proposed method reduces the design cost by applying the equivalent static loads on the design domain. An example of linear dynamic response optimization is solved and the efficiency of the proposed method is demonstrated.

Structural Strength Assessment and Optimization for 20 Feet Class Power Boat (20피트급 파워보트의 구조강도 평가 및 최적화)

  • Yum, Jae-Seon;Yoo, Jaehoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.108-114
    • /
    • 2016
  • Recently, there has been a growing interest in marine leisure sports and high speed power boat for fishing. The prototype of 20 feet class power boat was developed and authors are joined in this government-led project. The research was performed to evaluate the optimal structure and design of the structural strength necessary to ensure the structural safety of the power boat. A new material ROCICORE fiber added to the mat and roving was adopted for high-power tenacity. ANSYS Workbench has been used to make the structural model, evaluate the strength and optimize the structural design. The response of the structure to quasi-static slamming loads according to the rules and regulations of ISO 12215-5, Lloyd’s Register of Shipping and Korean Register has been implemented and studied. An optimization study for the structural response is carried out by changing the plate thickness and section modulus of stiffeners. The power boat structure derived fuel efficiency is optimized by performing the best possible structural design to minimize the hull weight.

Co-evolutionary Structural Design Framework: Min(Volume Minimization)-Max(Critical Load) MDO Problem of Topology Design under Uncertainty (구조-하중 설계를 고려한 공진화 구조 설계시스템)

  • 양영순;유원선;김봉재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.281-290
    • /
    • 2003
  • Co Evolutionary Structural Design(CESD) Framework is presented, which can deal with the load design and structural topology design simultaneously. The load design here is the exploration algorithm that finds the critical load patterns of the given structure. In general, the load pattern is a crucial factor in determining the structural topology and being selected from the experts어 intuition and experience. However, if any of the critical load patterns would be excluded during the process of problem formation, the solution structure might show inadequate performance under the load pattern. Otherwise if some reinforcement method such as safety factor method would be utilized, the solution structure could result in inefficient conservativeness. On the other hand, the CESD has the ability of automatically finding the most critical load patterns and can help the structural solution evolve into the robust design. The CESD is made up of a load design discipline and a structural topology design discipline both of which have the fully coupled relation each other. This coupling is resolved iteratively until the resultant solution can resist against all the possible load patterns and both disciplines evolve into the solution structure with the mutual help or competition. To verify the usefulness of this approach, the 10 bar truss and the jacket type offshore structure are presented. SORA(Sequential Optimization & Reliability Assessment) is adopted in CESD as a probabilistic optimization methodology, and its usefulness in decreasing the computational cost is verified also.

Optimal Shape Design of Space Truss Structure using Topology Optimization and Cellular Automata Model (위상최적화와 Cellular Automata 모델을 이용한 대공간 트러스 구조물의 최적형태 설계)

  • Kim, Ho-Soo;Lee, Min-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • It is important to design the optimal shape in the initial process because the influences on the design and construction are large according to the shape and pattern of spatial structures. However, the existing optimal shape designs for spatial structure are performed by the designer's intuition and experiences. Therefore, this study proposes the integrated process using the topology optimization and cellular automata model. First, the initial optimal shapes are obtained by using the topology optimization, and then the spatial truss structural patterns are created through the application of cellular automata rules. Finally, the optimal shapes to satisfy the various design conditions are generated by the structural analysis and size optimization.

Reliability-Based Structural Optimization of Transmission Tower (신뢰성에 기초한 철탑구조물의 최적화에 관한 연구)

  • 김성호;김상효;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.135-140
    • /
    • 1993
  • The optimum weight design of structure is to determine the combination of structural members which minimize the weight of structures and satisfy design conditions as well. Since most of loads and design variables considered in structural design have uncertain natures, the reliability-based optimization techniques need to be developed. The aim of this study is to estabilish the general algorithm for the minimum weight design of transmission tower structure system with reliability constraints. The sequential linear programming method is used to solve non-linear minimization problems, which converts original non-linear programming problems to sequential linear programming problems. The optimal solutions are produced for various reliability levels such as reliability levels inherent in current standard transmission tower cross-section and optimal transmission tower cross-section obtained with constraints of current design criteria as well as selected target reliability index. The optimal transmission towers satisfying reliability constraints sustain consistent reliability levels on all members. Consequently, more balanced optimum designs are accomplished with less structural weight than traditional designs dealing with deterministic design criteria.

  • PDF

Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring (부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화)

  • 김태봉;서상구;김창운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF

Structural Design of a Container Crane Part-Jaw, Using Metamodels (메타모델을 이용한 크레인 부품 조의 구조설계)

  • Song, Byoung-Cheol;Bang, Il-Kwon;Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Rail clamps are mechanical components installed to fix the container crane to its lower members against wind blast or slip. According to rail clamps should be designed to survive harsh wind loading conditions. In this study, a jaw structure, which is a part of a wedge-typed rail clamp, is optimized with respect to its strength under a severe wind loading condition. According to the classification of structural optimization, the structural optimization of a jaw is included in the category of shape optimization. Conventional structural optimization methods have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome the difficulties, the metamodel using Kriging interpolation method is introduced to replace the true response by an approximate one. This research presents the shape optimization of a jaw using iterative Kriging interpolation models and a simulated annealing algorithm. The new Kriging models are iteratively constructed by refining the former Kriging models. This process is continued until the convergence criteria are satisfied. The optimum results obtained by the suggested method are compared with those obtained by the DOE (design of experiments) and VT (variation technology) methods built in ANSYS WORKBENCH.

  • PDF