• 제목/요약/키워드: Structural mode

검색결과 2,359건 처리시간 0.027초

다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발 (Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge)

  • 허동훈;현동열;박성철;박귀일
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

Structural resemblance of the DNAJA-family protein, Tid1, to the DNAJB-family Hsp40

  • Jang, Jinhwa;Lee, Sung-Hee;Kang, Dong-Hoon;Sim, Dae-Won;Ryu, Kyung-Suk;Jo, Ku-Sung;Lee, Jinhyuk;Ryu, Hyojung;Kim, Eun-Hee;Won, Hyung-Sik;Kim, Ji-Hun
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.488-493
    • /
    • 2022
  • The specific pair of heat shock protein 70 (Hsp70) and Hsp40 constitutes an essential molecular chaperone system involved in numerous cellular processes, including the proper folding/refolding and transport of proteins. Hsp40 family members are characterized by the presence of a conserved J-domain (JD) that functions as a co-chaperone of Hsp70. Tumorous imaginal disc 1 (Tid1) is a tumor suppressor protein belonging to the DNAJA3 subfamily of Hsp40 and functions as a co-chaperone of the mitochondrial Hsp70, mortalin. In this work, we performed nuclear magnetic resonance spectroscopy to determine the solution structure of JD and its interaction with the glycine/phenylalanine-rich region (GF-motif) of human Tid1. Notably, Tid1-JD, whose conformation was consistent with that of the DNAJB1 JD, appeared to stably interact with its subsequent GF-motif region. Collectively with our sequence analysis, the present results demonstrate that the functional and regulatory mode of Tid1 resembles that of the DNAJB1 subfamily members rather than DNAJA1 or DNAJA2 subfamily proteins. Therefore, it is suggested that an allosteric interaction between mortalin and Tid1 is involved in the mitochondrial Hsp70/Hsp40 chaperone system.

Skinny-128-384와 Romulus-N의 SITM 공격 (SITM Attacks on Skinny-128-384 and Romulus-N)

  • 박종현;김종성
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.807-816
    • /
    • 2022
  • SITM (See-In-The-Middle)은 부채널 정보를 차분 분석에 활용하는 분석 기법이다. 이 공격은 블록암호 구현시 마스킹 되지 않은 중간 라운드의 전력 파형을 수집하여 공격자의 차분 패턴을 만족하는 평문 쌍을 선별하고 이를 차분 분석에 활용하여 키를 복구한다. NIST 경량 암호 표준화 공모사업의 최종 후보 중 하나인 Romulus는 Tweakable 블록암호 Skinny-128-384+를 기반으로 한다. 본 논문에서는 SITM 공격을 14-라운드 부분 마스킹 구현된 Skinny-128-384에 적용하였다. 이 공격은 기 제안된 결과보다 depth를 한 라운드 증가한 것뿐만 아니라 시간/데이터 복잡도를 214.93/214.93으로 줄였다. Depth는 전력 파형을 수집하는 블록암호의 라운드 위치를 뜻하며, 이 공격에 대응하기 위해 부분 마스킹 기법 적용 시 필요한 적절한 마스킹 라운드 수를 측정할 수 있다. 더 나아가 공격을 Romulus의 Nonce 기반 AE 모드 Romulus-N으로 확장하였으며, Tweakey의 구조적 특징을 이용하면 Skinny-128-384보다 적은 복잡도로 공격할 수 있음을 보인다.

Coconut shell waste as an alternative lightweight aggregate in concrete- A review

  • Muhammad Fahad, Ejaz;Muhammad ,Aslam;Waqas, Aziz;M. Jahanzaib, Khalil;M. Jahanzaib, Ali;Muhammad, Raheel;Aayzaz, Ahmed
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.299-330
    • /
    • 2022
  • This review article highlights the physical, mechanical, and chemical properties of coconut shells, and the fresh and hardened properties of the coconut shell concrete are summarized and were compared with other types of aggregates. Furthermore, the structural behavior in terms of flexural, shear, and torsion was also highlighted, with other properties including shrinkage, elastic modulus, and permeability of the coconut shell concrete. Based on the reviewed literature, concrete containing coconut shell as coarse aggregate with normal sand as fine showed the 28-day compressive strength between 2 and 36 MPa with the dried density range of 1865 to 2300 kg/m3. Coconut shell concretes showed a 28-day modulus of rupture and splitting tensile strength values in the ranges of 2.59 to 8.45 MPa and 0.8 to 3.70 MPa, respectively, and these values were in the range of 5-20% of the compressive strength. The flexural behavior of CSC was found similar to other types of lightweight concrete. There were no horizontal cracks on beams which indicate no bond failure. Whereas, the diagonal shear failure was prominent in beams with no shear reinforcements while flexural failure mode was seen in beams having shear reinforcement. Under torsion, CSC beams behave like conventional concrete. Finally, future recommendations are also suggested in this study to investigate the innovative lightweight aggregate concrete based on the environmental and financial design factors.

Link Prediction in Bipartite Network Using Composite Similarities

  • Bijay Gaudel;Deepanjal Shrestha;Niosh Basnet;Neesha Rajkarnikar;Seung Ryul Jeong;Donghai Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2030-2052
    • /
    • 2023
  • Analysis of a bipartite (two-mode) network is a significant research area to understand the formation of social communities, economic systems, drug side effect topology, etc. in complex information systems. Most of the previous works talk about a projection-based model or latent feature model, which predicts the link based on singular similarity. The projection-based models suffer from the loss of structural information in the projected network and the latent feature is hardly present. This work proposes a novel method for link prediction in the bipartite network based on an ensemble of composite similarities, overcoming the issues of model-based and latent feature models. The proposed method analyzes the structure, neighborhood nodes as well as latent attributes between the nodes to predict the link in the network. To illustrate the proposed method, experiments are performed with five real-world data sets and compared with various state-of-art link prediction methods and it is inferred that this method outperforms with ~3% to ~9% higher using area under the precision-recall curve (AUC-PR) measure. This work holds great significance in the study of biological networks, e-commerce networks, complex web-based systems, networks of drug binding, enzyme protein, and other related networks in understanding the formation of such complex networks. Further, this study helps in link prediction and its usability for different purposes ranging from building intelligent systems to providing services in big data and web-based systems.

Analysis of torsional-bending FGM beam by 3D Saint-Venant refined beam theory

  • Guendouz, Ilies;Khebizi, Mourad;Guenfoud, Hamza;Guenfoud, Mohamed;El Fatmi, Rached
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.423-435
    • /
    • 2022
  • In this article, we present torsion-bending analysis of a composite FGM beam with an open section, according to the advanced and refined theory of 1D / 3D beams based on the 3D Saint-Venant's solution and taking into account the edge effects. The (initially one-dimensional) model contains a set of three-dimensional (3D) displacement modes of the cross section, reflecting its 3D mechanical behaviour. The modes are taken into account depending on the mechanical characteristics and the geometrical form of the cross-section of the composite FGM beam. The model considered is implemented on the CSB (Cross-Section and Beam Analysis) software package. It is based on the RBT/SV theory (Refined Beam Theory on Saint-Venant principle) of FGM beams. The mechanical and physical characteristics of the FGM beam continuously vary, depending on a power-law distribution, across the thickness of the beam. We compare the numerical results obtained by the three-beam theories, namely: The Classical Beam Theory of Saint-Venant (Classical Beam Theory CBT), the theory of refined beams (Refined Beam Theory RBT), and the theory of refined beams, using the higher (high) modes of distortion of the cross-section (Refined Beam Theory using distorted modes RBTd). The results obtained confirm a clear difference between those obtained by the three models at the level of the supports. Further from the support, the results of RBT and RBTd are of the same order, whereas those of CBT remains far from those of higher-order theories. The 3D stresses, strains and displacements, obtained by the present study, reflect the 3D behaviour of FGM beams well, despite the initially 1D nature of the problem. A validation example also shows a very good agreement of the proposed models with other models (classical or higher-order beam theory) and Carrera Unified Formulation 1D-beam model with Lagrange Expansion functions (CUF-LE).

중간모멘트골조 상세를 갖는 건식 프리캐스트 콘크리트 보-기둥 접합부의 내진성능평가 (Seismic Performance Evaluation of Dry Precast Concrete Beam-Column Connections With Intermediate Moment Frame Details)

  • 김선훈;조종;오효근;최석동;여운용;이득행
    • 한국지진공학회논문집
    • /
    • 제27권3호
    • /
    • pp.129-137
    • /
    • 2023
  • This study presents a dry precast concrete (PC) beam-column connection, and its target seismic performance level is set to be emulative to the reinforced concrete (RC) intermediate moment resisting frame system specified in ACI 318 and ASCE 7. The key features include self-sustaining ability during construction with the dry mechanical splicing method, enabling emulative connection performances and better constructability. Test specimens with code-compliant seismic details were fabricated and tested under reversed cyclic loading, which included a PC beam-column connection specimen with dry connections and an RC control specimen. The test results showed that all the specimens failed in a similar failure mode due to plastic deformations in beam members, while the hysteretic response curve of the PC specimen showed comparable and emulative performances compared to the RC specimen. Seismic performance evaluation was quantitatively addressed, and on this basis, it confirmed that the presented system can fully satisfy all the required performance for the intermediate RC moment resisting frame.

Thermodynamic simulation and structural optimization of the collimator in the drift duct of EAST-NBI

  • Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4134-4145
    • /
    • 2022
  • The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.

복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석 (Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints)

  • 김원석;신금철;이정주
    • Composites Research
    • /
    • 제19권4호
    • /
    • pp.15-22
    • /
    • 2006
  • 구조물 설계에 복합재료-금속 접착제 결합 조인트의 개발 및 사용을 제한하는 가장 큰 요인은 접착 조인트의 하중지지 능력 예측을 위한 접착 계면의 강도 평가 방법의 부재이다. 본 연구에서는 복합재료-탄소강의 접착 강도를 계면 모서리에서의 응력강도계수와 파괴 인성 값으로 평가하였다. 구체적으로 동시 경화 성형법으로 제작된 복합재료-탄소강 양면 겹치기 접착조인트의 하중지지 능력을 파괴 역학적 분석 방법을 통하여 결정하였다. 이종재료 계면 모서리 첨단의 응력 특이성과 그 지수를 제시하고 최종적으로 응력강도계수와 실험을 통한 계면의 파괴인성 값을 획득하였다. 서로 다른 접합 길이를 갖는 조인트의 하중지지 능력 비교를 통하여 양면 겹치기 접착 조인트의 파괴 인성치와 혼합 모드에서의 균열 진전 기준을 $K_1-K_{11}$ 평면 내에 도시하였다.

The Impact of Entrepreneurial Education on Entrepreneurial Intention During the COVID-19 Pandemic: An Empirical Study from Pakistan

  • SOHU, Jan Muhammad;JUNEJO, Ikramuddin;KHUWAJA, Faiz Muhammad;QURESHI, Naveed Akhtar;DAKHAN, Sarfraz Ahmed
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권3호
    • /
    • pp.95-103
    • /
    • 2022
  • This study aimed to find the mediating impact of entrepreneurial education during COVID-19 on entrepreneurial intention among university students from major cities of Pakistan. Majority of businesses shifted to online from offline mode as a result of COVID-19 pandemic. This created a great opportunity for university students to become entrepreneurs without much investment during COVID-19. Primary data for this study was collected with the help of an adopted questionnaire from previous studies. An online survey was considered appropriate due to the COVID-19 situation in the country. The number of data samples collected from the major cities of Pakistan was 460. The research hypothesis was tested with the help of SmartPLS by using least square structural equation modeling. Findings revealed there is full mediation of entrepreneurial education during COVID-19 between the self-efficacy, subjective norms, and attitude towards entrepreneurship for entrepreneurial intention during COVID-19 among university students. Therefore, the research confirmed the application of the theory of planned behavior among university students in Pakistan with regards to factors such as self-efficacy, subjective norms, attitude towards entrepreneurship and entrepreneurial intention. The present study also concludes that all students regardless of their area of study such as Business and Engineering look forward to become entrepreneurs during COVID-19. The students opting for entrepreneurship had either formal or informal entrepreneurial education during COVID-19.