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Abstract 

 
Analysis of a bipartite (two-mode) network is a significant research area to understand the 
formation of social communities, economic systems, drug side effect topology, etc. in complex 
information systems. Most of the previous works talk about a projection-based model or latent 
feature model, which predicts the link based on singular similarity. The projection-based 
models suffer from the loss of structural information in the projected network and the latent 
feature is hardly present. This work proposes a novel method for link prediction in the bipartite 
network based on an ensemble of composite similarities, overcoming the issues of model-
based and latent feature models. The proposed method analyzes the structure, neighborhood 
nodes as well as latent attributes between the nodes to predict the link in the network. To 
illustrate the proposed method, experiments are performed with five real-world data sets and 
compared with various state-of-art link prediction methods and it is inferred that this method 
outperforms with ∼3% to ∼9% higher using area under the precision-recall curve (AUC-PR) 
measure. This work holds great significance in the study of biological networks, e-commerce 
networks, complex web-based systems, networks of drug binding, enzyme protein, and other 
related networks in understanding the formation of such complex networks. Further, this study 
helps in link prediction and its usability for different purposes ranging from building intelligent 
systems to providing services in big data and web-based systems.  
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1. Introduction 

Network analysis is a significant research area in modern network-based systems, enabling 
the prediction of relationships between interconnected nodes based on various parameters. 
Many of these networks exhibit a bipartite structure [1], characterized by two distinct types of 
nodes organized into separate clusters connected through links. Bipartite networks are 
prevalent in diverse domains, including scientific collaborations [2], human sexual interactions 
[3], and metabolic processes [4]. Analyzing complex bipartite networks for link prediction is 
an exciting and challenging field of study, as it allows for the prediction of future links and the 
understanding of unknown interactions, which holds vital importance across multiple 
application domains. Examples of such domains include e-commerce networks [5, 6], 
biological networks [7, 8], social networks [9–11], and drug side effect networks [12]. 
 Link prediction in bipartite networks employs various approaches, such as the projection of 
bipartite networks into unipartite networks and the application of local, quasi-local, and global 
similarity methods [13]. Local similarity methods primarily rely on the local contact structure 
and utilize the formation of triangle closing as a key principle. Global similarity indices utilize 
global topological information, considering the shortest path measures between nodes and 
assigning less weight to longer paths. However, the computation complexity of these methods 
may render them unfeasible for large networks. Quasi-local methods have emerged as a 
balanced solution, leveraging topological information as a global approach, thereby efficiently 
calculating associations and predicting links. In 2007, Liben Nowell conducted a 
comprehensive analysis of link prediction [14], providing a foundation for subsequent research 
in this field. Extensive research has been dedicated to link prediction in bipartite networks 
[15–24], employing mechanism-based models [15–24] and latent feature models [25–29]. 
However, latent feature models often overlook the presence of latent groups, potentially 
omitting crucial links within the network. Mechanism-based models can be further categorized 
as projection-based models [22, 23], which sacrifice structural information, and local 
community paradigm (LCP)-based models [18, 19]. Projection-based models are not efficient 
for link prediction in bipartite networks as they lose structural information and local 
community paradigm. 

To address the limitations of mechanism-based and latent feature-based models, this 
paper proposes a novel approach based on a composite similarity measure. The proposed 
method initially projects the bipartite network into a unipartite network based on a predefined 
threshold, extracting strong links (potential links) by eliminating redundant connections. 
Moreover, the proposed model incorporates two structural features: the number of butterfly 
enclosures formed by potential links and the average number of patterns between potential 
links. The number of butterfly enclosures counts the different ways information can travel 
between nodes within potential links, while the average number of patterns indicates the 
average number of nodes needed to connect one node to another in the projected network. The 
proposed method also extracts two additional features: the reciprocal of the sum of neighbors 
of the butterfly's enclosure by potential link and internal link. The former suggests that 
increased restriction in the information travel path raises the likelihood of link formation 
between nodes, while the latter classifies links into two types based on the presence of latent 
features. Subsequently, these extracted features are utilized as input for a classifier algorithm 
to predict links in the network. One potential approach is to employ a composite similarity 
measure that combines multiple similarity metrics, such as cosine similarity, Euclidean 
distance, and Jacquard similarity. This approach incorporates both mechanism-based and 
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latent feature-based similarities, aiming to enhance model accuracy. Additionally, techniques 
like feature selection, dimensionality reduction, and ensemble learning can be integrated to 
further improve model performance. By introducing a novel approach based on a composite 
similarity measure, this research aims to enhance the performance of mechanism-based and 
latent feature-based models by considering semantic similarity, structural similarity, and 
behavioral similarity to determine entity similarity. The composite similarity measure offers a 
comprehensive and accurate evaluation of similarity, leading to improved accuracy and 
robustness in addressing problems in mechanism-based and latent feature-based models. 

1.1 Problem Definition 
The core problem addressed in the above scenario is link prediction in complex bipartite 

networks. Bipartite networks consist of two distinct types of nodes organized into separate 
clusters connected through links. The objective is to predict future links or interactions 
between the nodes based on various parameters. The problem is challenging yet significant, as 
it allows for the understanding of unknown interactions and has applications in various 
domains such as e-commerce networks, biological networks, social networks, and drug side 
effect networks. The proposed approach based on a composite similarity measure aims to 
overcome the limitations of mechanism-based and latent feature-based models in link 
prediction. It combines multiple similarity metrics, considers both mechanism-based and latent 
feature-based similarities, and incorporates structural and additional features to enhance 
accuracy. By utilizing a classifier algorithm trained on known links and leveraging the 
composite similarity measure, the approach strives to predict the likelihood of link formation 
in the bipartite network accurately. The objective is to provide a more comprehensive and 
accurate evaluation of similarity, leading to improved accuracy and robustness in addressing 
link prediction problems in bipartite networks.  

1.2 Conceptual Theoratical Framework 
In this work, we first acknowledge the significance of link prediction in bipartite networks, 

which consist of distinct nodes organized into separate clusters connected by links and the 
wide-ranging applications of link prediction in these networks across various domains.  We 
then explore different approaches used in link prediction, including the projection of bipartite 
networks into unipartite networks and the application of local, quasi-local, and global 
similarity methods.  However, its is observed that there are limitations of existing mechanism-
based and latent feature-based models, such as their oversight of latent groups and the loss of 
structural information. To overcome these limitations, we propose a novel approach based on 
a composite similarity measure. The work involves a systematic approach to link prediction in 
bipartite networks. This approach begins by projecting the bipartite network into a unipartite 
network, thereby simplifying the analysis. The next step involves extracting structural features, 
including butterfly enclosures and patterns, which capture important information about the 
network's connectivity. These features, along with additional measures, are then used as inputs 
to a classifier algorithm for link prediction. In order to determine entity similarity, the approach 
emphasizes the consideration of semantic similarity, structural similarity, and behavioral 
similarity. This is achieved by utilizing a composite similarity measure that combines multiple 
similarity metrics. The ultimate goal of the proposed approach is to enhance the performance 
of link prediction models by improving accuracy and providing a comprehensive evaluation 
of similarity. 
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2. Related Works 
Link prediction in bipartite networks is a prominent research area within network 

dynamics analysis. Various approaches have been proposed to address this challenge, 
encompassing mechanism-based models [5][15][18,19][21–24], latent feature models [25–29], 
embedding methods [30–33], and community detection mechanisms [34]. Additionally, 
research has explored different network formations, including the integration of crowd-users 
rating information in social media platforms [35], trust-based selection network models of web 
services [36], and trajectory distance algorithms based on segment transformation distance 
[37]. Mechanism-based models can be further categorized as projection-based mechanisms [5, 
22, 23], LCP mechanisms [18, 19], PA mechanisms [15], and homophily mechanisms [21, 24]. 
Projection-based mechanisms involve projecting the bipartite network into a unipartite 
network and utilizing various similarity measures to predict links. LCP mechanisms emphasize 
the common neighbor index and local community structure in link formation. PA mechanisms 
are based on the preferential attachment principle, where higher degree nodes easily connect 
to other nodes. Homophily mechanisms operate based on the concept of triangular enclosures 
in unipartite networks transformed into quadrangular enclosures. Latent feature-based models 
focus on the latent groups present in the network. Community detection-based models aim to 
identify the number of communities but are often limited by the number or types of networks, 
commonly referred to as layers. Embedding methods involve converting the network into a 
lower-dimensional vector space, facilitating similarity search and supporting machine learning 
through low-dimensional representations. However, a drawback of embedding methods is the 
lack of interpretability. 

While the previous description highlights various approaches in the field of network 
dynamics, it is important to address the underlying needs and understanding of new network 
dynamics proposed in this study. To bridge this gap, our paper proposes a novel approach that 
goes beyond the existing techniques mentioned above. By considering the limitations and 
challenges associated with cluster analysis, we aim to overcome these drawbacks and 
introduce a method that effectively identifies strong potential links in bipartite networks. 
Cluster analysis is a widely used technique for discovering patterns and structures in large 
datasets [1]. However, it is sensitive to initial conditions and the choice of clustering algorithm 
[2]. This sensitivity can lead to different results and hinder replicability and validation. 
Moreover, the computational complexity of cluster analysis increases with larger datasets, 
limiting its scalability [3]. Overfitting is also a concern, where clusters may not generalize well 
to new data if the number of clusters is not appropriately chosen [4]. 

To address these limitations, our proposed method introduces new network dynamics that 
overcome the challenges of cluster analysis. By focusing on the underlying needs and 
understanding of bipartite networks, we provide a comprehensive approach to identify strong 
potential links. Through a detailed analysis and consideration of network dynamics, our 
method aims to enhance link prediction in bipartite networks, offering improved accuracy and 
scalability compared to existing techniques. By addressing the root needs of network dynamics 
and overcoming the limitations of traditional cluster analysis, our proposed approach 
contributes to advancing the field and providing meaningful insights into bipartite network 
dynamics. 

2.1 Bipartite Network Projection  
The bipartite graph can be represented as G = (U, V, E), where, U and V are two different 

types of sets of nodes and E is the edge or link between the element of U and V: E ⊆ U × V. 
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The bipartite graph can be projected into three types of unipartite networks, which consist of 
unweighted, weighted, and strengthening projections. The unweighted U projection of G is Gu 
= (U, Eu), in which (a,b) ∈ Eu if a and b have at least one common neighbor in G i.e γ(a) ∩ γ(b) 
≠ φ, then Eu can be written as: Eu = {(a,b)|a,b ∈ U, ∃p ∈ V, p ∈ γ(a)∩γ(b)}. The unweighted 
V-projection is defined dually. The unweighted U and V projection of the bipartite network 
shown in Fig. 1 is extended in Fig. 2a, and Fig. 2b respectively. 
 

Fig. 1. Dummy bipartite network G 
 

 
Fig. 2. (a) Unweighted U-projection and (b) Unweighted V-projection of bipartite network Fig. 1. 

 
 

Fig. 3. (a) Weighted U-projection and (b) Weighted V-projection of bipartite network Fig. 1. 

(a
 

(b
 

(a) (b) 
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Fig. 4. (a) Strengthening U-projection of the bipartite network Fig. 1 when, T=1, (b) strengthening V-

projection of the bipartite network Fig. 1 when, T=1 
 
In general, the unweighted network projections work, if this network has at least one 

common neighbor in G, irrespective of the number of common neighbors. This has a problem 
that other vital connected neighbors maybe be discarded. To overcome this problem, weighted 
projection networks were proposed [38]. Projections of unipartite networks are projected with 
the weight function W. For Gu projection network W(ui, vj) is |γ(u) ∩ γ(v)| in bipartite network 
G. The V -weighted projection of network G is defined dually. The weighted U and V-
projections of the bipartite network G in Fig. 1 are described in Fig. 3a, and Fig. 3b 
respectively. Again, there are so many weakly connected ties that contain redundant 
information as much as strong links that include essential information. To extract these strong 
links, strengthening the projection of a bipartite networks, is proposed [39]. The projection 
network here is strengthened with a predetermined threshold value T. The edge whose weight 
|W(ui, vj)| > T are kept, and others are removed in the U and V part of the network in Fig. 1, 
which is projected in Fig. 4a, and Fig. 4b respectively. 

3. Proposed Model 
Consider a bipartite network G = (U, E, V), where U and V are two different types of sets 

of nodes and E is the edge or link between the element of U and V such that; E ⊆ U × V. The 
information in the bipartite network can be represented as M ∈ {0,1}m×n(m=|U|,n=|V |). 
Where, 
𝑀𝑀𝑀𝑀𝑀𝑀 = {1

0𝑀𝑀𝑖𝑖𝑀𝑀 ∈ 𝑈𝑈 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀 ∈ 𝑉𝑉, are connected otherwise                 (1) 
The formation of a link in the bipartite network is not solely dependent on the 

neighborhood of the nodes. It needs to analyze the neighborhood as well as other factors like 
the formation of the pattern and the way to reach one node from another, etc. The possibility 
of connecting all the nodes is also very low and calculating the link prediction score for all the 
possible links is computationally expensive. Therefore, this work proposes an efficient link 
prediction method to deal with bipartite networks, which removes some less important links 
based on the projection of the network and keeps only potential links that tend to exist in the 
future. Based on the potential link, information is extracted and fed to the link predictor to 
predict the formation of the link. 
 

(a) (b) 
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Table 1. Mathematical symbols used in this paper 
Symbols Meaning 
G Bipartite Network 
Gu, Gv U and V are projections of network G 
T Weight threshold 
Gu

T ,  Gv
T U and V strengthening projections of the network G by weight threshold T 

PL Potential link 
a, b, c,…. Nodes in part U part of Network G 
p, q, r,… Nodes in the V part of the network  
γ(x) Neighbor of node x in the network G 
γu

T(x) γv
T(x) Neighbor of node x in the network Gu

T and Gv
T respectively 

∞ Butterfly enclosure by PL 
 

The architecture of the proposed model is given in Fig. 5. The proposed model has three 
functional modules: potential link extractor, feature extractor, and link predictor. The potential 
link extractor module extracts some strong links by analyzing the structural property of the 
graph with the help of the projected network. Feature extractor module extracts four features: 
The number of butterflies (∞) enclosures between two nodes (∞ (i,j)i∈U and j∈V ), the 
average number of patterns between the potential link (avg{Nu(PT), Nv(PT)}), reciprocal of 
the sum of the neighbor of butterfly nodes (RSNN), and internal link (IL). The link predictor 
module uses an ensemble classifier to classify the link to 1 or 0 based on the formed and 
unformed link respectively. The details of these three parts are as follows: 

 
Fig. 5. Architecture of the proposed bipartite link prediction model 

 

3.1 Potential Link Extractor  
A network has many weak links that contain redundant information and strong links that 

contain important information. The weak links are the ones that may not have a probability to 
exist in the future and only the strong links are vital in these formations. The potential link 
extractor extracts these strong links by filtering weak links. For bipartite network G = (U, V, 
E), where U-part is strengthening unipartite projection network) GuT= (U, EuT) with threshold 
value T and V part strengthening projection network) GvT = (U, EvT) with a threshold T.Value 
of T is determined by the grid search through cross-validation in training sets AUC-PR value. 
For example, let X1 belong to U in Gu = (U, EuT) strengthening projection network shown in 
Fig. 4.  γu

T (X1) = {k1, k2, k3…, kn} is the neighbor of X1 in GuT and γ(X1) is the neighbor of 
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X1 in the bipartite network. Potential link for node X1 based on U-projection of G can be 
written as: PL(X1) = γ(X1) × {γ(k1) ∪ γ(k2)··· ∪ γ(kn)}. Assume that there are X1, X2,···, Xn 
nodes in GuT, therefore the total potential links based on the U-projection of G can be written 
as: PL = {PL(X1) ∪ PL(X2)··· ∪ PL(Xn)}. Based on the strengthening U-projection of the 
network as in Fig. 4a, a set of potential links for node c is extracted as  uT(c) = {a,b,d}, γ(a) U  
γ(b) U γ(d)= {p,q,r,s,t} therefore, potential links are (PL)={(c,p),(c,q),(c,r),(c,s),(c,t)}. 
Similarly, the potential link (PL) is extracted based on the V-projection of the graph. Further, 
the work does feature extraction and link prediction based on these potential links. 
 
Algorithm 1: Potential link extraction algorithm based on U-projection of the graph 
Input: G = (U, V, E), U and V are the two types of a vertex set and E is the edge set of the 

graph. 
Parameters: T is a threshold value for network projection, m, and n are the size of node set 

U and V. 
Output: Potential Link; PL ⊆ E; is the set of node pair: ui × vj, where, ui ∈ U and vi ∈ V. 
1 U = {u1,u2,···,um} 
2 V = {v1,v2 ···,vn} 
3 EuT ← φ 
4 for i = 1 to n do 
5       for j = i + 1 to n do 
6            if |γ(ui) ∩ γ(uj)| > T then 
7                            Eu

T ← Eu
T ∪ {ui × uj} 

8           end 
9                  end 
10           end 
11 Gu = (U, Eu ) 
12 PL ← φ 
13 for i = 1 to n do 
14       for j = 1 to m do 
15             if |γu

T (ui) ∩ γ(vi)| ≠φ then 
16                           PL ← PL ∪ {γu

T (ui) × γ(vj)} 
17            end 
18                end 
19 end 
 

Algorithm 1 gives the potential link extraction algorithm used in the proposed method. It is 
based on the U-projection of the given bipartite network, which evaluates the structural 
property of the node pair and extracts the potential link. 

3.2 Feature Extractor 
Feature extractor is a mechanism, which extracts the structural features, neighborhood-

based features, and latent features based on the potential link.  

3.2.1 Number of Butterfly Enclosures by the Potential Link 
For any potential link, if the potential link is replaced with the real link nodes, then the 

number of ∞ patterns formed between these nodes is the number of butterfly enclosures. For 
a potential link (c,p); as described above in the potential link extractor part; there are five 
numbers of butterflies enclosures: {∞(c,q, a,p),∞(c,q,b,p),∞(c,r, a,p),∞(c,r,b,p),∞(c,s,b,p)}, 
(Fig. 6). 
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Fig. 6. Number of butterfly encloser for the potential link (c,p) 

 

3.2.2 Pattern Covered by the Potential Link 
Let b and c belongs to U of the bipartite graph G = (U,V,E), if there exist a node q ∈ V 

such that (b,q) ∈ E and (c,q) ∈ E then the node pair {b,c} is a pattern in U-part of the bipartite 
graph G. In other words, if γ(b)∩γ(c)   φ then the node pair {b,c} is a pattern in the U-part of 
the bipartie graph G = (U,V,E), where b,c ∈ U. Therefore, there must exist an edge (b,c) in 
the U-projection of the bipartite graph G. Similarly, let p and q belong to the V part of the 
bipartite graph G = (U,V,E), if there exists a node a ∈ U such that (p,a) ∈ E and (q,a) ∈ E 
then the node pair {p,q} is a pattern in the V-part of the bipartite graph G. In other words, if 
γ(p) ∩ γ(q)   φ then the node pair {p,q} is a pattern in the V-part of the bipartite graph G = 
(U,V,E), where p,q ∈ V . Therefore, there must exist an edge (p,q) in the V-projection of the 
bipartite graph G. 

Let (c,p) be a potential link in bipartite graph G: Gu and Gv which are the U-part and V-
part of a projected graph with threshold T. For each node gi ∈ γu(c) ∩ γ(p), we call {c, gi} is 
the pattern covered by potential link (p,c) in the U-part of the network, for each node si ∈ 
γv(p) ∩ γ(c). and call {p, si} is the pattern covered by potential link (p,c) in the V-part of the 
network. Fig. 2a and Fig. 2b represent the U-projection and V-projection of the network in 
Fig. 1. The neighbor of node c in Gu, γu(c) = {a,b,d}, and neighbor of p in bipartite graph G, 
γ(p) = {a, b}, therefore patterns covered by potential link (c,p) in U-part of the network are, 
{{c, a},{c,b}}. The neighbor of node p in Gv, γu(p) = {q,r,s}, and neighbor of c in bipartite 
graph G, γ(c) = {q,r,s}, therefore patterns covered by potential link (c,p) in V-part of the 
network are, {{p,q},{p,r},{p,s}}. Potential link (c,p) covered two patterns in the U-part and 
three patterns in the V-part, therefore, the patterns covered by the potential link in the U and 
V part of the network can be similar or different. 

3.2.3 Reciprocal of the Sum of Neighbor of Butterflies 
Let x1,x2,x3, and x4 is the nodes in butterfly, the sum of the neighbor of butterfly can be 

written as: |γ(∞(x1,x2,x3,x4))| = |γ(x1)| + |γ(x2)| + |γ(x3)| + |γ(x4)| − 8. Here 8 is subtracted 
because every node in the butterfly has two neighbors in the same butterfly. It is assumed that 
the higher the neighbors of nodes in the butterfly, the lower the chance of the formation of a 
link between the potential nodes. That is why the reciprocal of the sum of neighbors of 
butterflies be fed to the link predictor. Here it considers these neighbors of nodes in butterflies 
as noise. In Fig. 7a the number of neighbors of butterfly nodes is high compared to Fig. 7b so 
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the information travel path in the potential link (b,d) may get distracted with a higher 
probability in Fig. 7a due to a large number of neighbors open for a possible path. 
 

Fig. 7. butterfly nodes with (a) a large number of neighbors and (b) a small number of neighbors 

3.2.4 Internal Link Classifier 
In [22], the author has described the internal link and proved the sufficient condition to 

be an internal link. The work further studied the latent features and came up with the idea of 
the sufficient condition and proved it. The internal link classifier classifies the potential link 
into two classes: 0 and 1. If the link is internal, then this link belongs to class 1 else class 0. 
Consider G = (U, V, E) is a bipartite network G, x ∈ U, and y ∈ V are the two nodes in G 
and the edge (x,y)   E. The works create a new bipartite network G' = (U, V, E') by adding (x,y) 
belongs to U × V or (x,y) ∈ E', where E' = E ∪ {(x × y)}. Let Gu = (U, Eu) be the U-projected 
graph of G and G'u = (U, E'u) be the U-projected graph of G'. If Gu = G'u then (x,y)  an internal 
link by U-projection. In other words, (x,y) is the pair of nodes in the bipartite graph G, such 
that adding a link (x,y) to G does not change the U-projection of G, then the node pair (x,y) is 
an internal link by U-projection. Similarly, if adding the link in graph G does not change the 
V-projection of graph G then this link is the internal link by V-projection. In Fig. 1, node pair 
(c,p) is an internal link by both U and V-projection. All the neighbors of node p, γ(p) = {a,b} 
are already connected to the node c in Gu, After adding a link (c,p), the neighbor between (c, 
a) and (c,b) will increase to two, but there is no addition of new link to Gu thus Gu does not 
change. Similarly, all the neighbors of node c, γ(c) = {q,r,s} are already connected to the node 
p in Gv. After adding a link (c,p), the neighbor between (p,q), (p,r), and (p,s) will increase but 
the V-projection of graph G does not change.  
Theorem 1. (Necessary condition): A node pair (x,y) in a bipartite graph G = (U, V, E) is an 
internal link by U-projection if and only if it satisfies γu(x) ∩ γ(y)  φ. Here, φ is the empty set. 
Proof: Let (x,y)  E, x ∈ U y ∈ V in G = (U, V, E) is an internal link. Let graph G' = (U, V, 
E')= Eu ∪ {(x,y)} is the new bipartite graph by adding the link (x,y) in G. Then according to 
internal link definition, E'u =Eu U {(x,z), z ϵ y(y)} Suppose that (x,y) is an internal link, i.e. Eu 
=E'u then all links (x,z) are already in Eu. Therefore, each z ∈ {γ(y) and γu(x)} so γ(y) ∩ γu(x) 
≠φ. 
(Sufficient condition): A node pair (x,y) in a bipartite graph G = (U, V, E) is an internal link 
by U-projection if it satisfies γ(y) ⊆ γu(x), and x γ(y). 
Proof: Let (x,y)  E, and x γ(y), x ∈ U y ∈ V in G = (U, V, E) be an internal link. Let graph 
G' = (U, V, E)' = Eu ∪{(x,y)} is the new bipartite graph by adding the link (x,y) in G. Then 

a d

cb

a d

cb

(a) (b) 
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according to internal link definition, E'u = Eu U { (x,z), z∈ γ(y)}. Suppose that (x,y) is an 
internal link, i.e. Eu = E'u then all links (x,z) are already in Eu. Therefore, for each z ∈ γ(y), 
there exists β in U. By symmetry, z ∈ γ(β) and z ∈ γu(β). Therefore, z ∈ γ(x) and so γ(y) ⊆ 
γu(x). 

3.3 Link Predictor 
In this research, different machine learning classification algorithms are used as a basic 

model to extract classes which are represented as 1 when a link is formed and 0 when a link is 
not formed.  

4. Experiments 
In the experiment, the connected link and possible link are used in equal proportion to 

training our model, as depicted in the proceeding sections. 

4.1 Data Sets 
Experiments are performed on five real-world data sets. (i) Enzyme [7]: a biological 

bipartite network of drugs binding enzyme protein. (ii) Ion Channel [7]: a biological bipartite 
network of drugs binding ion protein referred to here as (IC). (iii) G-protein Coupled Receptor 
(GPCR) [7]: a biological bipartite network of drugs binding G-protein Coupled Receptor. (v) 
Books [34]: a bipartite network of user who rates books. (vi) Drug side-effect association 
network (http://snap.stanford.edu/decagon): This is a drug side-effect association network that 
contains information on side effects caused by drugs that are on the U.S. market here referred 
to as (DSE). The topological statistics of these five data sets are presented in Table 2.  
 

Table 2. The detailed information of the Five data sets used to verify the proposed model 
Network |U| |V| |E| 

Enzyme 445 664 2926 
IC 204 210 1476 
GPCR 95 223 635 
Books 445801 105278 1149739 
DSE 640 10185 174978 

* |V|, |U| denotes the number of two types of nodes. |E| indicates the number of edges between the nodes. 

4.2 Baseline Algorithms 
The work compares the proposed link prediction methods with other popular link 

prediction methods in the bipartite network as a baseline. Four of them are node neighborhood 
similarity-based methods (CN, JC, AA, PA) [18], three of them are LCP mechanism-based 
similarity methods (CAR, CJC, CAA) [18], and three embedding-based methods (line [30], 
deep walk [31], node2vec [32]). Table 3 shows the algorithmic expression of all the baseline 
methods. Where γ(x) and γ(y) represent the first-order neighbor, γ(γ(x)) and γ(γ(y)) represent 
the second-order neighborhood of the node x and y respectively. SLCL is the total link between 
the common neighbor between the nodes and α(z) is the local community degree of z. 
Relatively similar work to this paper is presented in [1].  The author focuses on the concepts 
of potential energy and mutual information. The approach taken is a three-step process: 
converting the bipartite graph into a unipartite graph using a weighted projection, computing 
the potential energy and mutual information between each node pair in the projected graph. 
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However, our model benefitted from the information in the unipartite network projected from 
the bipartite network and the structural information in an original bipartite network.  

4.3 Evaluation Measures 
The experiment is conducted to compare the proposed method with the various state of 

the art; link prediction methods in the bipartite network. Here experiment results with three 
evaluation indexes: area under the precision-recall curve (AUC-PR), F1-score (f), and 
Precision (p) are shown. The goal of the AUC-PR measure is to have a model at the right top 
corner, which means getting only true positives without false positives and false negatives. 
F1-score is the weighted average or harmonic mean of precision and recall. 
 

Table 3. Overview of the baseline method 
Class Method Formulae 
Node-neighbor similarity CN[18] 

JC[18] 
AA[18] 
PA[18] 

 
LCP mechanism 
similarity Embedding 
method 

CAR[18] 
CJC[18] 
CAA[18]  

Embedding Methods line[30] 
deepwalk[31] 
node2vec[32] 

 

* The table represents the baseline algorithm used in this work to compare the results. 

It measures the prediction precision and coverage, and the relative contribution of 
precision and recall to the F1-score is equal. F1-score can be calculated by the formula: 

F1= 







+
×

×
recallprecision
recallprecision2            (2) 

Where, 

Precision = 
)( fptp

tp
+

 

Recall = 
)( fntp

tp
+

           (3) 

Where, tp, fp, and fn are the number of true-positive samples, number of false-positive 
samples, and number of false-negative samples respectively. Precision is the ability of a 
classifier not to label a negative sample as positive.  

4.4 Experiment Result 
All the experiments are performed on Intel core i5-7500 CPU at 3.40 GHZ×4 with 8-GB 

DDR4 RAM. The programming language used is python 3.6 under Ubuntu 16.04.6 LTS 64-
bit. Table 4, Table 5, and Table 6, show the comparative values of the measure, AUC-PR, 
F1-score, and precision respectively for the proposed method, which is named a CSE, and all 
the other baseline methods. In this many machine-learning classifiers such as Random Forests 
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Classifier (RFC), Support Vector Machine Classifier (SVC), Decision Tree Classifier (DTC), 
and Gaussian Naive Bayes Classifier (GNB) are tested. All the results in the table are based 
on 10-fold cross-validation after removing 10% of the edges randomly from the extracted 
potential links. 10-fold cross-validation is used to verify the performance of all the baselines 
as well as the proposed model. In 10-fold cross-validation, the data set is randomly divided 
into ten parts, one part is fixed as a test data set, and the other nine parts are used for the 
training data sets. 
 

Table 4. AUC-PR of the algorithm on different data sets 
AUC-PR Enzyme IC GPCR DSE Book 
CN 0.757 0.780 0.698 0.748 0.781 
JC 0.787 0.781 0.728 0.832 0.823 
AA 0.780 0.771 0.689 0.814 0.795 
PA 0.702 0.696 0.489 0.546 0.691 
CAR 0.805 0.794 0.738 0.764 0.826 
CJC 0.816 0.805 0.741 0.846 0.842 
CAA 0.818 0.808 0.692 0.794 0.806 
line 0.879 0.880 0.763 0.862 0.888 
deepak 0.827 0.853 0.799 0.843 0.887 
node2vec 0.899 0.899 0.782 0.873 0.898 
CSE-KNC 0.905 0.922 0.860 0.958 0.957 
CSE-DTC 0.921 0.911 0.831 0.954 0.945 
CSE-SVC 0.862 0.873 0.781 0.899 0.848 
CSE-GNB 0.843 0.853 0.791 0.941 0.883 
CSE-RFC 0.925 0.927 0.849 0.959 0.958 

 
Table 5. F1-score on different data sets with different 

F Enzyme IC GPCR DSE Book 
CN 0.726 0.757 0.613 0.746 0.779 
JC 0.814 0.760 0.641 0.814 0.823 
AA 0.812 0.749 0.502 0.812 0.796 
PA 0.524 0.650 0.227 0.524 0.683 
CAR 0.779 0.762 0.675 0.762 0.826 
CJC 0.816 0.776 0.678 0.848 0.844 
CAA 0.818 0.782 0.582 0.793 0.807 
Line 0.879 0.878 0.784 0.921 0.894 
deepak 0.874 0.853 0.798 0.924 0.898 
node2vec 0.898 0.895 0.793 0.932 0.926 
CSE-KNC 0.883 0.910 0.800 0.957 0.957 
CSE-DTC 0.907 0.892 0.772 0.954 0.945 
CSE-SVC 0.839 0.854 0.712 0.899 0.837 
CSE-GNB 0.798 0.808 0.673 0.941 0.877 
CSE-RFC 0.916 0.921 0.805 0.959 0.957 
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Table 6. Precision on different data sets with different model 
Precision Enzyme IC GPCR DSE Book 

CN 0.713 0.785 0.739 0.753 0.802 

JC 0.757 0.757 0.689 0.842 0.823 

AA 0.767 0.760 0.639 0.810 0.805 

PA 0.693 0.659 0.472 0.562 0.705 

CAR 0.802 0.790 0.768 0.766 0.821 

CJC 0.803 0.788 0.733 0.842 0.842 

CAA 0.805 0.788 0.643 0.800 0.811 

line 0.874 0.883 0.821 0.925 0.903 

deepak 0.875 0.881 0.854 0.902 0.904 

node2vec 0.884 0.905 0.824 0.934 0.826 

CSE-KNC 0.888 0.950 0.808 0.958 0.957 

CSE-DTC 0.906 0.893 0.828 0.949 0.957 

CSE-SVC 0.871 0.907 0.840 0.900 0.926 

CSE-GNB 0.800 0.801 0.686 0.923 0.951 

CSE-RFC 0.923 0.922 0.857 0.958 0.958 
 
 

The process is repeated ten times. For embedding-based methods, the embedding 
dimensions of 12 for dataset Enzyme, IC, GPCR, and 128 for Book and DSE dataset are used 
to achieve the best result. After getting embedding for every node, a random sample of some 
node is used that subtracts their embedding matrix and feeds it into a classifier (in this 
experiment RFC works best) to classify the link. In node neighbor-based similarity and LCP-
based similarity methods, features are extracted according to the formula and fed these features 
into a classifier (in this experiment RFC works best in most of the cases) to classify the link. 
In Tables 4, 5, and 6, the first column represents all the baseline and this method, and the first 
row represents the data sets with which the experiment is carried. Each cell in the table 
represents the results of the corresponding method in the corresponding data sets. The highest 
value in the column is shown in the bold text. 

The measure AUC-PR is improved by this proposed method with the best -performing 
classifier for all the datasets, as shown in Table 4. For example, the improvement from the 
nearest algorithm is 2.89% (from node2vec) on Enzyme, 3.11% (from node2vec) on IC, 6.1% 
(from the deep walk) on GPCR, 8.6% (from node2vec) on DSE, and 7% (from the line) in 
Book dataset. This indicates that this proposed method surpasses the results of other baseline 
methods in selecting only true positives by ignoring the false positives and false negatives. 
The measure F1-score of the proposed method is also higher than the other baseline methods, 
as shown in Table 5. For example, an improvement from the nearest algorithm is 2% (from 
node2vec) on Enzyme, 3.06% (from node2vec) on IC, 1% (from a deep walk) on GPCR, 2.9% 
(from node2vec) on DSE, and 3.34% from (node2vec) on Book datasets. Similar to measuring 
AUC-PR and F1-Score, the measurement precision by the proposed method is also higher than 
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the baseline methods as shown in Table 6. Improvement in precision is ∼1% to ∼4% on 
different datasets from the best-performing baseline algorithm. In most cases, Random Forest 
Classifier (RFC) outperforms another classifier in the method. The work has also analyzed the 
experiment results by varying training datasets for three bipartite networks: Enzyme, IC, and 
Books, from 10% to 90% shown in Fig. 8, Fig. 9, and Fig. 10. 
 
 

 
 

 
 

* The graphs are plotted from the data obtained from experiments. 
 

Fig. 8. AUC-PR under different methods with different sizes of training sets on three real networks. 
(a) Enzyme Channel. (b) Ion channel. (c) Books. 
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Fig. 9. F1-score under different methods with different sizes of training sets on three real networks. 

(a) Enzyme Channel. (b) Ion channel. (c) Books. 
 

The work uses a random forest classifier in this method and the method is represented by 
name (CSE). In most cases, increasing the training ratio improves the performance of the 
methods this is because the increase in training ratio increases the information needed for the 
classifier to classify unobserved links.  

The work also carried out principal component analysis (PCA) [40] in extracted features 
for all the datasets. The main purpose of doing PCA is to find new variables that are a linear 
function of those in the extracted datasets and that successively maximize variance and are 
uncorrelated with each other. The cumulative explained variance for all the datasets is 
presented in Fig. 11. It shows each component is not related to each the others as the 
cumulative explained variance reaches 100% in the fourth component in any dataset. This 
indicates that all four features play a role independently in link prediction on these datasets. 
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Fig. 10. Precision under different methods with different sizes of training sets on three real networks. 

(a) Enzyme channel. (b) Ion channel. (c) Books. 
 

Fig. 11. Principal component analysis on extracted features 
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This work has also performed experiments without removing weak redundant links using 

a random classifier as a predictor and the result for three metrics: AUC-PR, F1-score, and 
Precision is presented in Table 7 which shows that the proposed method performs better (can 
be seen in Table 4, 5, 6) after the weak links were removed. 
 

Table 7. Evaluation metrics on book data set using a combination of extracted features 
 Enzyme IC GPCR DSE Book 

AUC-PR 0.881 0.873 0.842 0.912 0.910 

F1-score 0.873 0.882 0.792 0.902 0.921 

Precision 0.878 0.891 0.823 0.911 0.923 

 
The research also analyzed the result of our proposed methods using each single extracted 

feature and the combination of these features for some datasets shown in Tables 8 and 9. From 
these tables, it is clear that adding every extracted feature improves the link prediction ability 
of the proposed model. It has represented several butterfly enclosures, pattern covered, 
reciprocal of the sum of neighbors of butterfly nodes, and internal link features as C1, C2, C3, 
and C4 respectively. In this paper, the extracted feature C1 is the most important feature as it 
predicts a link with a high score alone the other 3 features. C2 and C3 are the second and third 
important features that contribute to link prediction as shown in Table 8 and Table 9 for 
sample datasets. The work demonstrates how the result changes if all these single features and 
a combination of prominent features are fed. The feeding of C1 and C2 features into the 
classifier shows that the result for link prediction is better than compared to feeding single 
features. The same is valid for a combination of C1, C2, and C3. 

The work achieves the best result by feeding all these extracted features. This indicates 
that all these extracted features somehow play role in the improvement of the model link 
prediction ability. 

 
Table 8. Evaluation metrics on book data set using a combination of extracted features 

 C1 C2 C3 C4 C1+C2 C1+C2+C3 

AUC-PR 0.891 0.894 0.736 0.871 0.927 0.948 
F1-score 0.890 0.892 0.715 0.878 0.925 0.948 
Precision 0.922 0.919 0.788 0.809 0.923 0.946 

 
Table 9. Evaluation metrics on enzyme data set using a combination of extracted features 

 C1 C2 C3 C4 C1+C2 C1+C2+C3 

AUC-PR 0.826 0.817 0.716 0.46 0.890 0.921 

F1-score 0.789 0.767 0.617 0.11 0.874 0.909 

Precision 0.855 0.788 0.646 0.13 0.889 0.909 
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5. Discussions and Contribution of the Research 
The provided research focuses on addressing the limitations of existing mechanism-based 

and latent feature-based models for link prediction in bipartite networks. The paper introduces 
a novel approach based on a composite similarity measure, which aims to enhance the accuracy 
and robustness of the prediction models by considering semantic similarity, structural 
similarity, and behavioral similarity to determine entity similarity. One of the key strengths of 
our proposed approach is the integration of multiple similarity metrics, such as cosine 
similarity, Euclidean distance, and Jacquard similarity, into a composite measure. By 
combining these metrics, our model captures the different aspects of similarity and provides a 
more comprehensive evaluation. This not only improves the accuracy of link prediction but 
also enhances the model's ability to handle complex network structures and relationships. 
Another important contribution of the research is the incorporation of structural features in the 
prediction process. The introduction of features such as the number of butterfly enclosures and 
the average number of patterns adds valuable information about the network structure and the 
ways in which information can travel between nodes. These features provide a deeper 
understanding of the relationships within the bipartite network and contribute to the overall 
prediction accuracy. Furthermore, this work suggests the utilization of techniques like feature 
selection, dimensionality reduction, and ensemble learning to optimize the model's 
performance. These approaches help to identify the most relevant features, reduce the 
computational complexity, and improve the generalization ability of the model. The proposed 
research has potential implications and applications across various domains, including e-
commerce networks, biological networks, social networks, and drug side effect networks. The 
ability to accurately predict links in bipartite networks has practical significance in 
understanding unknown interactions, predicting future connections, and providing valuable 
insights into the underlying relationships. The research addresses a vital aspect of network 
analysis in modern network-based systems and contributes to the advancement of knowledge 
in this field. However, one area that could be further discussed is the evaluation and validation 
of the proposed approach. While our paper mentions the use of a classifier algorithm and 
potential techniques for improving model performance, it lacks some more work in the details 
on the specific evaluation metrics used, the choice of benchmark datasets, and comparative 
analyses with existing methods. This can also be the extended work for this research. Overall, 
the research presents an innovative approach to link prediction in bipartite networks by 
integrating mechanism-based and latent feature-based similarities through a composite 
similarity measure. The incorporation of structural features, the utilization of multiple 
similarity metrics, and the consideration of various domains make this research significant in 
advancing the understanding and prediction of relationships within complex network 
structures. 

The study significantly advances the field by presenting a unique method for link 
prediction in bipartite networks based on a composite similarity measure. By including both 
structural and latent feature-based similarities, this strategy solves the drawbacks of previous 
mechanism-based and latent feature-based models. Accurate predictions are enhanced by the 
addition of structural components like butterfly cages and patterns. The composite similarity 
measure synthesizes many similarity measures to offer a thorough assessment of similarity. 
The suggested method improves the precision and robustness of current models by taking into 
account semantic, structural, and behavioral similarities. The study also proposes merging 
feature selection, dimensionality reduction, and ensemble learning approaches to further 
improve model performance. A thorough framework for evaluating complex networks across 
a variety of disciplines is provided by this research. 
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6. Conclusions 
This research analyzes the multiple similarities directly extracted from the original 

bipartite network after extracting potential links from the weighted projected network. The 
work focuses on preserving structure-based, neighbor-based, and latent features to make the 
final prediction of the link. By summing up these features, the proposed method achieved 
superior results compared to other state-of-art methods. Experiments were performed by 
taking different real-world data sets which consist of a biological bipartite network of drugs 
binding enzyme protein, a biological bipartite network of drugs binding ion protein, a 
biological bipartite network of drugs binding G-protein Coupled Receptor, and a bipartite 
network of a user who rates books and compared the results of same data sets with other state-
of-art link prediction methods. The propose proposed method performed better than other 
methods and we were able to reach more than 95% of AUC-PR, F1-score, and precision hence 
proving the algorithm to be better. This work holds great significance in the study of complex 
bipartite networks to predict link and unknown interactions formed by nodes and edges in a 
given network, which can be utilized and applied in various fields of research and business. 
The work has an utmost application in the study of biological networks, e-commerce networks, 
complex web-based systems, the network of drug binding, enzyme protein, and other related 
networks to understand the formation of such complex networks. Further, the results achieved 
from this work will help in link prediction usability for different purposes ranging from 
building intelligent systems to providing service in big data and web-based systems. 

Future research in bipartite networks should concentrate on scalable and effective 
methods for dealing with sizable network datasets, integrating various data sources, and 
investigating hybrid models that mix mechanism-based and latent feature-based strategies. 
Deep learning, graph neural networks, and reinforcement learning are examples of advanced 
machine learning algorithms that may capture complicated patterns and non-linear correlations 
that standard models would find challenging. The effectiveness of suggested techniques will 
be established, and their benefits will be emphasized, through evaluation studies and 
comparison analyses utilizing benchmark datasets. Finally, real-world applications in e-
commerce, social networks, or biology may show how the generated models perform in 
practice and confirm how well they work to solve certain problems. 
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