DOI QR코드

DOI QR Code

Analysis of torsional-bending FGM beam by 3D Saint-Venant refined beam theory

  • Guendouz, Ilies (Civil Engineering and Hydraulic Laboratory, 8 Mai 1945 University of Guelma) ;
  • Khebizi, Mourad (Department of Civil Engineering. Mentouri University of Constantine) ;
  • Guenfoud, Hamza (Civil Engineering and Hydraulic Laboratory, 8 Mai 1945 University of Guelma) ;
  • Guenfoud, Mohamed (Civil Engineering and Hydraulic Laboratory, 8 Mai 1945 University of Guelma) ;
  • El Fatmi, Rached (National Engineering School of Tunis, University of Tunis El Manar)
  • Received : 2021.03.04
  • Accepted : 2022.10.05
  • Published : 2022.11.10

Abstract

In this article, we present torsion-bending analysis of a composite FGM beam with an open section, according to the advanced and refined theory of 1D / 3D beams based on the 3D Saint-Venant's solution and taking into account the edge effects. The (initially one-dimensional) model contains a set of three-dimensional (3D) displacement modes of the cross section, reflecting its 3D mechanical behaviour. The modes are taken into account depending on the mechanical characteristics and the geometrical form of the cross-section of the composite FGM beam. The model considered is implemented on the CSB (Cross-Section and Beam Analysis) software package. It is based on the RBT/SV theory (Refined Beam Theory on Saint-Venant principle) of FGM beams. The mechanical and physical characteristics of the FGM beam continuously vary, depending on a power-law distribution, across the thickness of the beam. We compare the numerical results obtained by the three-beam theories, namely: The Classical Beam Theory of Saint-Venant (Classical Beam Theory CBT), the theory of refined beams (Refined Beam Theory RBT), and the theory of refined beams, using the higher (high) modes of distortion of the cross-section (Refined Beam Theory using distorted modes RBTd). The results obtained confirm a clear difference between those obtained by the three models at the level of the supports. Further from the support, the results of RBT and RBTd are of the same order, whereas those of CBT remains far from those of higher-order theories. The 3D stresses, strains and displacements, obtained by the present study, reflect the 3D behaviour of FGM beams well, despite the initially 1D nature of the problem. A validation example also shows a very good agreement of the proposed models with other models (classical or higher-order beam theory) and Carrera Unified Formulation 1D-beam model with Lagrange Expansion functions (CUF-LE).

Keywords

Acknowledgement

We would like to thank the General Directorate for Scientific Research and Technological Development (DGRSDT) through its thematic science and technology research agency (ATRST) for having supported the present doctoral research, which is part of research project Number A01L02UN240120190001.

References

  1. Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
  2. Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl. Phys. A, 123(4), 1-9. https://doi.org/10.1007/s00339-017-0854-0.
  3. Alexraj, S., Vasiraja, N. and Nagaraj, P. (2013), "Static behaviour of functionally graded material beam using finite element method", 2013 International Conference on Energy Efficient Technologies for Sustainability, IEEE, 267-273.
  4. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Dynamic Analysis of layered functionally graded viscoelastic deep beams with different boundary conditions due to a pulse load", Int. J. Appl. Mech., 12(5), 2050055. https://doi.org/10.1142/S1758825120500556.
  5. Ayatollahi, M., Bagheri, R., Nourazar, M., Monfared, M.M. and Mousavi, S.M. (2017), "Analytic solutions of multiple moving cracks in an orthotropic layer bonded to an orthotropic FGM coating", Appl Math. Comput., 293, 394-403. https://doi.org/10.1016/j.amc.2016.08.015.
  6. Bagheri, R., Ayatollahi, M. and Asadi, E. (2013), "Dynamic fracture analysis of multiple defects in an imperfect FGM coating-substrate layers", Int. J. Mech. Sci., 75, 55-65. https://doi.org/10.1016/j.ijmecsci.2013.06.006.
  7. Bagheri, R., Ayatollahi, M. and Mousavi, S.M. (2015), "Analytical solution of multiple moving cracks in functionally graded piezoelectric strip", Appl. Math. Mech. (English Ed.), 36(6), 777-792. https://doi.org/10.1007/s10483-015-1942-6.
  8. Bagheri, R. and Mirzaei, A.M. (2019), "Fracture analysis in an imperfect FGM orthotropic strip bonded between two magneto-electro-elastic layers", Iran. J. Sci. Technol.-Trans. Mech. Eng., 43(2), 253-271. https://doi.org/10.1007/s40997-017-0129-6.
  9. Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solid. Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5.
  10. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  11. Deschilder, M., Eslami, H. and Zhao, Y. (2006), "Nonlinear static analysis of a beam made of functionally graded material", 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th, 2011.
  12. El-Galy, I.M., Saleh, B.I. and Ahmed, M.H. (2019), "Functionally graded materials classifications and development trends from industrial point of view", SN Appl. Sci., 1(11), 1-23. https://doi.org/10.1007/s42452-019-1413-4.
  13. Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.
  14. Esen, I., Ozarpa, C. and Eltaher, M.A. (2021), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  15. Fallahnejad, M., Bagheri, R. and Noroozi, M. (2018), "Transient analysis of two dissimilar FGM layers with multiple interface cracks", Struct. Eng. Mech., 67(3), 277-281. https://doi.org/10.12989/sem.2018.67.3.277.
  16. El Fatmi, R. (2016), "A refined 1D beam theory built on 3D Saint-Venant's solution to compute homogeneous and composite beams", J. Mech. Mater. Struct., 11(4), 345-378. https://doi.org/10.2140/jomms.2016.11.345.
  17. El Fatmi, R. and Zenzri, H. (2002), "On the structural behavior and the Saint Venant solution in the exact beam theory: Application to laminated composite beams", Comput. Struct., 80(16-17), 1441-1456. https://doi.org/10.1016/S0045-7949(02)00090-1.
  18. Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004.
  19. Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM beams by means of a unified formulation", IOP Conf. Ser.: Mater. Sci. Eng., 10(1), 012073. https://doi.org/10.1088/1757-899X/10/1/012073
  20. Guendouz, I., Khebizi, M., Guenfoud, H. and Guenfoud, M. (2022), "Analysis of FGM cantilever beams under bending-torsional behavior using a refined 1D beam theory", Periodica Polytechnica Civil Eng., 66(4), 1262-1277. https://doi.org/10.3311/ppci.20595.
  21. Guenfoud, H., Ziou, H., Himeur, M. and Guenfoud, M. (2016), "Analyses of a composite functionally graded material beam with a new transverse shear deformation function", J. Appl. Eng. Sci. Technol., 2(2), 105-113.
  22. Guenfoud, H. (2019), "Modelisation par elements finis speciaux des structures en materiaux a gradient fonctionnel", Doctoral Dissertation.
  23. Hadji, L., Daouadji, T.H., Meziane, M., Tlidji, Y. and Bedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315.
  24. Hadji, L., Khelifa, Z. and El Abbes, A.B. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0.
  25. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  26. Hebbar, N., Hebbar, I., Ouinas, D. and Bourada, M. (2020), "Numerical modeling of bending, buckling, and vibration of functionally graded beams by using a higher-order shear deformation theory", Frattura ed Integrita Strutturale, 14(52), 230-246. https://doi.org/10.3221/IGF-ESIS.52.18.
  27. Hosseini, M., Farhatnia, F. and Oveissi, S. (2018), "Functionally graded Timoshenko beams with elastically-restrained edge supports: thermal buckling analysis via Stokes' transformation technique", Res. Eng. Struct. Mater., 4(2), 103. http://doi.org/10.17515/resm2016.83me1018.
  28. Ilies, G. et al. (2021), "Bending-torsional behavior analysis using a refined beam theory", Acad. J. Civil Eng., 39(1), 2019-2022. https://doi.org/10.26168/ajce.39.1.13.
  29. Kang, Y.A. and Li, X.F. (2009), "Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force", Int. J. Nonlin. Mech., 44(6), 696-703. https://doi.org/10.1016/j.ijnonlinmec.2009.02.016.
  30. Khebizi, M., Guenfoud, H., Guenfoud, M. and El Fatmi, R. (2019), "Three-dimensional modelling of functionally graded beams using Saint-Venant's beam theory", Struct. Eng. Mech., 72(2), 257-273. https://doi.org/10.12989/sem.2019.72.2.257.
  31. Kutis, V., Murin, J., Belak, R. and Paulech, J. (2011), "Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials", Comput. Struct., 89(11-12), 1192-1205. https://doi.org/10.1016/j.compstruc.2010.10.012.
  32. Lahmar, M., Naccache, F. and El Fatmi, R. (2017), "Thermo-mechanical analysis of composite beams", Compos. Struct., 162, 388-400. https://doi.org/10.1016/j.compstruct.2016.11.038.
  33. Lanc, D., Vo, T. ., Turkalj, G. and Lee, J. (2015), "Buckling analysis of thin-walled functionally graded sandwich box beams", Thin Wall. Struct., 86, 148-156. https://doi.org/10.1016/j.tws.2014.10.006.
  34. Lanc, D., Turkalj, G., Vo, T.P. and Brnic, J. (2016), "Nonlinear buckling behaviours of thin-walled functionally graded open section beams", Compos. Struct., 152, 829-839. https://doi.org/10.1016/j.compstruct.2016.06.023.
  35. Li, J., Hu, X. and Li, X. (2016), "Free vibration analyses of axially loaded laminated composite beams using a unified higher-order shear deformation theory and dynamic stiffness method", Compos. Struct., 158, 308-322. https://doi.org/10.1016/j.compstruct.2016.09.012.
  36. Li, J., Hua, H. and Shen, R. (2008), "Dynamic stiffness analysis for free vibrations of axially loaded laminated composite beams", Compos. Struct., 84(1), 87-98. https://doi.org/10.1016/j.compstruct.2007.07.007.
  37. El Fatmi, R. and Ghazouani, N. (2011), "Higher order composite beam theory built on Saint-Venant's solution. Part-I: Theoretical developments", Compos. Struct., 93(2), 557-566. https://doi.org/10.1016/j.compstruct.2010.08.024.
  38. Naccache, F. and El Fatmi, R. (2018a), "Buckling analysis of homogeneous or composite I-beams using a 1D refined beam theory built on Saint Venant's solution", Thin Wall. Struct., 127, 822-831. https://doi.org/10.1016/j.tws.2018.02.028.
  39. Naccache, F. and El Fatmi, R. (2018b), "Numerical free vibration analysis of homogeneous or composite beam using a refined beam theory built on Saint Venant's solution", Compos. Struct., 210, 102-121. https://doi.org/10.1016/j.compstruc.2018.08.005.
  40. Nguyen, T.T., Thang, P.T. and Lee, J. (2017), "Flexural-torsional stability of thin-walled functionally graded open-section beams", Thin Wall. Struct., 110, 88-96. https://doi.org/10.1016/j.tws.2016.09.021.
  41. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  42. Sahraei, A., Pezeshky, P., Sasibut, S., Rong, F. and Mohareb, M. (2022), "Finite element formulation for the dynamic analysis of shear deformable thin-walled beams", Thin Wall. Struct., 173, 108989. https://doi.org/10.1016/j.tws.2022.108989.
  43. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0.
  44. Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. https://doi.org/10.12989/sem.2018.66.1.085.
  45. Yang, H., Daneshkhah, E., Augello, R., Xu, X. and Carrera, E. (2022), "Numerical vibration correlation technique for thin-walled composite beams under compression based on accurate refined finite element", Compos. Struct., 280, 114861. https://doi.org/10.1016/j.compstruct.2021.114861.
  46. Yoon, K., Lee, P.S. and Kim, D.N. (2015), "Geometrically nonlinear finite element analysis of functionally graded 3D beams considering warping effects", Compos. Struct., 132, 1231-1247. https://doi.org/10.1016/j.compstruct.2015.07.024.
  47. Zenkour, A.M. and Radwan, A.F. (2020), "A nonlocal strain gradient theory for porous functionally graded curved nanobeams under different boundary conditions", Физическая мезомеханика, 23(3), 77-92. https://doi.org/10.24411/1683-805X-2020-13008.
  48. Zenkour, A.M. and Radwan, A.F. (2021), "A compressive study for porous FG curved nanobeam under various boundary conditions via a nonlocal strain gradient theory", Eur. Phys. J. Plus, 136(2). 248. https://doi.org/10.1140/epjp/s13360-021-01238-w.
  49. Zenkour, A. M. and Sobhy, M. (2022), "Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams", Eng. Comput., 38(s2), 1313-1329. https://doi.org/10.1007/s00366-020-01224-3.
  50. Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023.
  51. Ziou, H., Guenfoud, H. and Guenfoud, M. (2016), "Numerical modelling of a Timoshenko FGM beam using the finite element method", Int. J. Struct. Eng., 7(3), 239-261. https://doi.org/10.1504/ijstructe.2016.077719.