• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.03 seconds

Behavior of FRP strengthened RC brick in-filled frames subjected to cyclic loading

  • Singh, Balvir;Chidambaram, R. Siva;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.557-566
    • /
    • 2017
  • Fiber reinforced polymer (FRP) sheets are the most efficient structural materials in terms of strength to weight ratio and its application in strengthening and retrofitting of a structure or structural elements are inevitable. The performance enhancement of structural elements without increasing the cross sectional area and flexible nature are the major advantages of FRP in retrofitting/strengthening work. This research article presents a detailed study on the inelastic response of conventional and retrofitted Reinforced Concrete (RC) frames using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi-static loading. The hysteretic behaviour, stiffness degradation, energy dissipation and damage index are the parameters employed to analyse the efficacy of FRP strengthening of brick in-filled RC frames. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

Analysis and Design of 750kW Nacelle Cover (750kW 나셀커버 구조해석 및 설계)

  • Park, Jae-Hyun;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.295-298
    • /
    • 2008
  • The major function of the nacelle cover is protecting the inside equipments. Therefore, it is required not only sufficient strength and stability but also light weight. In this paper, design loads are calculated according to the GL Wind guideline Ed. 2003. To ensure the structural safety, a composite structure is selected. The structural design is processed by two steps which are preliminary design and detail design. In the preliminary design step, a structural analysis is performed with initial thickness, 5mm. As reviewing above analysis results, weak regions of the nacelle cover reinforced using the spar cap structure which is same as the blade structure. In the analysis model, the support structure is connected with the nacelle cover and analyzed its structural safety at the same time.

  • PDF

A Study on the Structural Strength Analysis according to the Core Shapes of Aluminum Sandwich Panels (알루미늄 샌드위치패널의 심재 형상에 따른 구조강도해석)

  • 배동명;손정대
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.277-284
    • /
    • 2001
  • Recently, with development of mechanics of materials, as pursuing the high speed of the ships, a demanding of composite construction which satisfies high strength and low weight at the same time is iner casing. A sandwich element is a type of composite construction, which is composed of thin, strong, stiff and relatively high density faces and a think, light, and weaker core material. As 2nd moment is increased by faces is separated from the neutral axis farther, a sandwich element is most effective light structural form. In this paper, the make a comparative study Aluminum Honeycomb Sandwich Panel(AHSP) and Aluminum Pyramid Sandwich Panel(APSP).

  • PDF

Development of Design and Analysis System for Material Handling Cranes (운반하역 크레인의 설계해석 자동화 시스템 개발)

  • 임동준;박정연;이충동
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.153-159
    • /
    • 1999
  • A material handling crane is composed of many complex structural components which require sufficient strength, stiffness and stability throughout its service life and need to be light in weight, and satisfy the required functions under the entire range of operating conditions. In this study, the analysis system for material handling cranes is presented. This program integrate various structural analyses modules with the GU(Graphic User Interface) concept. Utilizing basic variables as input data, the analysis system performs quasi-static, eigenvalue, buckling, fatigue and stability analysis. Using this program, the designer can generate optimal design data for the cranes without my actual measurements. This system will also be extended to other mechanical structures with kinematic motion like crane.

  • PDF

Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties (동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Structural Behaviour of Composite Rigmats with Snap-fit connection (가도용 착탈조립식 복합소재 리그매트의 구조거동 분석)

  • Lee, Sung-Woo;Hong, Kee-Jeung;Cho, Nam-Hoon;Kim, In-Tai
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.533-538
    • /
    • 2007
  • Since glass-fiber reinforced composite decks have high-strength, light-weight and high durability, many researches on the composite decks for bridges are currently performed and many composite decks are developed. Some of the developed composite decks can be applied as rigmats for temporary roads such as oil developing temporary roads. In this paper, a composite deck for rigmat is developed and studied. Structural behavior of the developed composite deck for rigmat is verified by both analysis and experiment.

  • PDF

Minimum Weight Design of Ship Structure by Reanalysis Technique (재해석기법에 의한 선체 최소중량설계)

  • S.W.,Park;J.K.,Paik;I.S.,Nho;H.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.62-70
    • /
    • 1989
  • For the conduct of optimum design for such complicated and large structures as ship structure by direct structural analysis such as finite element method, it is very important problem that the process needs much computational efforts due to the repeated structural analysis. In this study, the reanalysis technique based on the modified reduced basis method is applied in the process to reduce the computing time required in repeated structural analysis. Numerical examples to simple grillage and actual ship structure are performed and applicability of reanalysis technique to structural optimization process is discussed.

  • PDF

Methods of pairwise comparisons and fuzzy global criterion for multiobjective optimization in structural engineering

  • Shih, C.J.;Yu, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.17-30
    • /
    • 1998
  • The method of pairwise comparison inherently contains information of ambiguity, fuzziness and conflict in design goals for a multiobjective structural design. This paper applies the principle of paired comparison so that the vaguely formulated problem can be modified and a set of numerically acceptable weight would reflect the relatively important degree of multiple objectives. This paper also presents a fuzzy global criterion method ($FGCM_{\lambda}$) included fuzzy constraints that coupled with the objective weighting rank obtained from the modified pairwise comparisons for fuzzy multiobjective optimization problems. Descriptions in sequence of this combined method and problem solving experiences are given in the current article. Multiobjective design examples of truss and mechanical spring structures illustrate this optimization process containing the revising judgement techniques.

Multicut high dimensional model representation for reliability analysis

  • Chowdhury, Rajib;Rao, B.N.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.651-674
    • /
    • 2011
  • This paper presents a novel method for predicting the failure probability of structural or mechanical systems subjected to random loads and material properties involving multiple design points. The method involves Multicut High Dimensional Model Representation (Multicut-HDMR) technique in conjunction with moving least squares to approximate the original implicit limit state/performance function with an explicit function. Depending on the order chosen sometimes truncated Cut-HDMR expansion is unable to approximate the original implicit limit state/performance function when multiple design points exist on the limit state/performance function or when the problem domain is large. Multicut-HDMR addresses this problem by using multiple reference points to improve accuracy of the approximate limit state/performance function. Numerical examples show the accuracy and efficiency of the proposed approach in estimating the failure probability.

Structural Design and Analysis for the Reinforced Frame of Vehicle (자동차 보강 프레임에 대한 구조 설계 및 해석)

  • Kang, Sung-Soo;Cho, Seong-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.504-510
    • /
    • 2010
  • To achieve the structural safety of the vehicle, designs in various cases are carried out by using CATIA program. It is promoted the relaxation of stresses by collisions from the front portion, the side part and the rear portion of the vehicle. In this study, we conduct a variety of design of frames for the light weight frame of the vehicle and structural analysis, to protect the driver by adding reinforced frame. In the case of such a collision, there are maximum stresses greater than yield strength of steel and a very large local plastic deformation at the collision part.