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Multi-Objective and Multi-Level Optimization for Steel Frames
Using Sensitivity Analysis of Dynamic Properties
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ABSTRACT

An improved optimization algorithm for muiti-objective and muiti-level (MO/ML) optimum design of steel frames
is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions
need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of
the proposed method, well known multi-level optimization techniques using decomposition method that separately
utiizes both system-level and element-level optimizations and an artificial constraint deletion technique are
incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural
strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through
sensitivity analysis of dynamic properties is proposed in the paper. The efficiency and robustness of the improved
MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical
examples.

1. Introduction

Most of the design problems in practice have more than one important objective function. Recent trends when
designing steel structures have shown more than two objectives. For example, cost saving by decreasing
structural weight may be the one objective; and increasing structural strain energy to endure earthquakes or
minimizing deflection may be the other. An optimum design model for more than two objective functions requires a
muilt-objective optimization method, which has recently been developed to adjust many conflicting designs to
structural optimizations. Pareto (1896) presented the first study on multi-objective optimization. However, wider
interests in optimization theory and operation research was not studied until the late 1960s, and from then on,
several studies on these subjects have been presented [1, 2, 3, 4]. Most of the studies were concemed mainly
with the theory, but applications to engineering design can hardly be found. Not until recently did a few studies on
muilti-objective optimization appear in structural optimization [5, 6].

Only recently, studies on multi-objective optimizations using multi-level optimization {7, 8, 9] started to improve
their efficiency because too much of computing times are usually required with multi-objective optimization. As one
of the most recent study, Gang Li et al. (1999) has proposed a plain algorithm for multi-objective and mutti-level
(MO/ML) optimization for eight-story, one-bay shear steel frame, which has the objective functions of weight and
structural strain energy [11]. The plain MO/ML algorithm is the latest development for multi-level and multi-objective
optimization with dynamic property. However, the algorithm shows robust results only when an initial value is set
near an optimum value. The algorithm also did not perform the sensitivity analysis of dynamic properties, and thus
repeated dynamic analysis had to be followed. In the paper, an improved MO/ML algorithm for multi-objective and
multi-level optimization is proposed to overcome these drawbacks in the plain MO/ML algorithm [11]. In the
improved MO/ML algorithm, an artificial constraint deletion is introduced to increase its robustness and efficiency.
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In addition, the sensitivity analysis of dynamic properties is applied to increase the computing efficiency. The new
optimization algorithm is applied to a ten-story, one-bay stee! frame numerical example, and it is demonstrated that
the improved MO/ML algorithm has better robustness and efficiency than the plain MO/ML algorithm [11].

2. General Formulations

For steel frames, the multi-objective and multi-level optimization problem can be stated in the following form as in

the reference [11].

For the system-level optimization:

Find X such that minimize {-U/X), W(X)} &)

subjectto G,(X)<0 ,j=12,..,n X' <X <X"
where X is the design variables at system-level, which are the moment of inertia; U(X) is the structural strain
energy part of multiobjective function; W(X)is the structural steel weight part of multi-objective function;
G,(X) is j4h constraint, n, is the number of constraint, and X*“and X" are the lower and upper bounds of the
system variables, respectively.

For the element-level optimization:

Find x such that minimize W, (x) 2)

subjectto g, (X;,x)=0; g, (x)<0 k=12,...,n; x'<x<x'
where x is the design variables at element-level, which are the member cross-sectional dimensions; W, (x) is
the objective function, which is the weight of ith member, g, (x)is k-th constraint, », is the number of the
constraints; x* and x"are the lower and upper bounds of the element variables, respectively; and
g,(X;,x) s the additional relative equality constraint that connects design variables of the two levels and thus
simplifies the coupling between them.

il eSS
2.1 Design variables i I“" by
In general, the design variables of a steel frame at system-level . —_—
{X} and element-level {x} are taken as the moments of inertia of T m T '
each member and element cross-sectional dimensions . b dbke
respectively, which may be given in vector forms as b ' ’ )
L L
7/;; 7777
Fig. 1. A shear steel frame with | Section
X=X, X\, X,)=U,1,,..1,) ©)
x=(x,x,,%,x,)=(h, b, ,t, 1) (4)

Noting that the design variables are moments of inertia of frame members, the relationships between cross
sectional area A, section modulus S and moment of inertia | must be given in a multi-level optimization. The
following relations can be obtained [11].

0.75
A(1)=[ ﬁ_]«/? . S(1)=[1i] So (5a), (5b)
0 ’ 0

where A, and /, are the initial values of the cross-sectional area and moment of inertia of an element at the
beginning of the system-level optimization in a single iteration cycle.

2.2 Objective function

Both maximum structural strain energy and minimum structural weight are simultaneously considered as the
objective function in the system-level optimization as in the reference [11]. The multi-objective function often has a
linearly weighting form by employing the weighting method for system-level optimization as
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FW) :WI[W(I)j+w2[— U(I)) ; (wy,wy >0, and wy +w, =1) 6)
W, Uy
where U(I) and W([) are structural strain energy and weight, respectively; U, and W, are initial values atthe
beginning of each iteration; and w, and w, are weight factors to be determined by considering engineering

problems in practice.
For a shear stee! frame under earthquake load, the structural strain energy can be derived as

U(1)=i Zn: %QUS,‘] @
J=l =l

where and are shear force and story drift of the i-th element with respect to the j-th mode of vibration,
respectively; m is the total number of modes of vibration; and n is number of elements.
Based on Eq. (5a), the structural weight can be written as

@

where is material mass density; and and are cross-sectional area and height of the i-th element,

respectively.
Besides, note that the objective function in the element-level becomes the weight of the element:

©)

2.3 Constraints
The basic and design constraints required for optimal (seismic) design of steel frame according to the AISC-
LRFD and AISC seismic provisions may be summarized as in Table 1.

Table 1. Constraints for Strength and Local Buckling

Level Design Constraints Remarks
and are required and nominal
For i axial compressive or fensile strength,
System | Strength respectively, and are
For required and nominal fiexural strength,

respectively; and and are
resistance factors for the axial and flexure.

For the flange,
For the web,
Element LB?EI"n " is yield strength of member and flange
9 (ksi), and is nominal yield strength.
if

in
The frequency constraints are used to make the natural frequencies avoid a range called restricted zone of
frequency, which can be given in the following form [11]:
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(10)

where is the j-th natural frequency; and and are the lower and upper bound of the restricted zone,
respectively. Three alternative cases can be considered assuming that
1) In case all the structural natural frequencies are less than the restricted zone, the frequency constraint Eq.
(10) can be changed into the following fom:

(11a)

2) In case all the structural natural frequencies are greater than the restricted zone, the frequency constraint
Eq. (10) can be changed into the following form:

(11b)

3) In case when a couple of adjacent frequencies called concemed frequencies, and - which can
cover the entire restricted zone, the frequency constraint can be written as

(11c)

Additional relative constraint

In order to assure the consistency between system and element design variables, the coupling between the
system-level and element-level is treated by an additional relative constraint in the element-level optimization. The
appropriate additional relative constraint is very important in a multi-level optimization problem because it affects
both the convergence of the optimization procedure and the final optimal solutions. The equality constraint of
moment of inertia of an element is introduced during the element-level optimization process to treat the coupling
effectively. The additional relative constraint can be written as:

(12)
where s the optimum moment of inertia for the i-th element at system-level.
id in
The side constraints prescribe design variables in a certain range, which can be stated as:
(13a), (13b)
The variable limits should be carefully chosen based on engineering requirements in practice.

3. Multi-objective and Multi-level Optimization Algorithm
3.1 Plain MO/ML Algorithm for Multi-objective and Multi-level Optimization
In the reference [11], a plain optimum design algorithm shown in Fig. 2 proposed for a multi-objective and multi-

level optimization for steel framed structures. However, it is found that the following problems are incurred when

the algorithm is applied to numerical examples:

s  Only in case an initial value is not far from a near-optimum value in the algorithm, robust results could be
obtained. If an initial value is feasible but far from the optimum, unreliable results may be produced.

¢  The dynamic analysis is performed to evaluate objective function and constraint in each iterative step without
sensitivity analysis. Dynamic reanalysis in each iterative step will be more time-consuming in a large structure,
and therefore, the computational efficiency can not be expected when it is applied to large structures.

3.2 improved MO/ML Algorithm for Multi-Objective and Multi-Level Optimization

An Improved MO/ML algorithm shown in Fig. 3 is proposed for an efficient multi-objective and multi-level
optimization, which shows better performance compared to the plain MO/ML algorithm [11]. In the improved
MO/ML algorithm, a sensitivity analysis of dynamic properties and an artificial constraint deletion technique are
introduced to carry out optimum design efficiently for fast convergence.
1) Artificial Constraint Deletion

In the improved MO/ML algorithm, the artificial constraint deletion for frequency constraint is introduced to
improve the efficiency and the robustness of the optimization algorithm. After optimization is carried out for all

-336-



constraints except a frequency constraint, the feasibility for frequency constraint is checked. If feasibility is satisfied
with frequency constraint, it is assumed that the optimization process arrived at a near optimum design. Otherwise,
sensitivity analysis for eigenvalue and eigenvector has to be carmied out and an optimization with frequency
constraints is executed.

-

Caloulate . | A, S,

' Data Input I
v
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| with Initial Data

System Optimization
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Step ]
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with Optimum Data
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L Data Output !
Fig. 2. Plain MO/ML Algorithm (Li, et al.) Fig. 3. Improved MO/ML Algorithm

2) Sensitivity Analysis of Dynamic Properties

Sensttivity analyses of dynamic properties are required for an efficient reanalysis of eigenvalue and eigenvector.
Detailed descriptions of sensitivity analysis are shown in the reference [10), and thus only key equations are briefly
described herein. The basic problem is to compute derivatives of eigenvalues and eigenvectors with respect to
design variables or system parameters. For convenience, consider the following general eigenvalue problem:

(14)

where isaneigenvalue,  eigenvector, the stiffness matrix; and the mass matrix corresponding to
the design vector

The equation of sensitivity analysis for eigenvalue and eigenvector can be obtained by differentiation of Eq. {14)
as

(1)
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(16)

where

4. Numerical Example

In this section, a ten-story, one-bay shear steel frame with I-sections (Fig. 1), which is almost the same example
used in the reference {11}, is optimized by an optimum design program developed for the mult-objective and mult-
level optimization based on the theory and formulations discussed above. The basic data for design are
summarized in Table 2.

Table 2. Basic Data for Design

ltem Data
Building story and Story height N=10, =55m
Concentrated mass and Mass density of steel =4000kg, =7850kg/
Elastic modulus and Yield strength E = 200,000 Mpa, F, =248 Mpa (36 ksi)
Restricted zone of Frequency [ . 1=[1520]
Bounds of system Variables (10m?) =(7.0,7.0,5.0,5.0,4.0,4.0,3.0,3.0,3.0, 3.0)and
=(1.5,15,1.0,1.0,0.7,0.7,05,03,05,0.3)
Bounds of element variables (10%m) =(80, 50,3.0,16) and =(25,15,1.0,0.5)

Table 3. Initial Values

Story 1 2 3 4 5 6 7 8 9 10

h, (m) | 1000 900 80.0 75.0 70.0 650 550 50.0 200 50

intal | b (am) 300 300 300 250 200 15.0 11.0 100 50 50

Ve | t (am) 15 15 10 1.0 1.0 1.0 10 10 10 10

1 t, (cm) 10 10 1.0 1.0 1.0 1.0 1.0 05 1.0 1.0
Frequency (radisec) | 23345, 165.38, 131.26, 103.52, 78.54, 58.74, 37.82, 18.80, 10.03, 2.60

h, (Gm) 800 800 800 700 650 600 450 300 12.0 80

intial | by (cm) 15.0 200 15.0 15.0 140 80 80 90 50 50

vale | 4 (am) 20 10 10 10 1.0 10 10 10 10 10

2 t, (cm) 10 10 10 10 10 1.0 10 05 05 05

Frequency (radisec) | 163,89, 126.75, 98.17, 74.65, 54.65, 38.55, 24.95, 14.11, 8.20, 3.40

The new improved and the plain MO/ML algorithms are applied to the above design example. The results of the
application using the two algorithms are comparatively shown in Table 4. From the results summarized in Table 4
and convergence of the optimum solution in Fig. 4 and Fig. 5, essential features of the proposed algorithm are
comparatively discussed with emphasis on robustness and efficiency of the algorithms. However, the parametric
study of and , that shows about same as the results given in the reference [11), is not described in the
paper.

A robust algorithm should produce a consistent solution regardless of its initial value. To investigate the
robustness of the two algorithms, each optimization is individually performed with two different sets of initial values
of Table 3. For each optimization, the convergence history of optimum process is presented in Fig. 5. As shown in
Table 4, the plain MO/ML algorithm produces diverse results depending on whether the initial value is properly
assumed or not When the optimization is camied out using the plain algorithm, an optimum design is obtained
only with the initial values that satisfy feasible conditions. By using the frequency obtained from the eigenvalue
analysis, the type of frequency constraint is determined. If the initial values are far away from the optimum then the
type of frequency constraint in the algorithm is not reasonably selected and thus a real optimum solution cannot be
obtained. However, the improved MO/ML algorithm by using artificial constraint deletion can produce reasonable
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frequency type, regardless of the initial values. Therefore, since reasonable optimum results are obtained
regardiess of initial values, it may be argued that the new improved MO/ML algorithm is more robust than the plain
one. . .

An efiicient algorithm could be defined as the one that reaches the convergence within a reasonable number of
iterations, which is also important factor to prove superiority of the algorithm. In order to demonstrate the efficiency
of the improved MO/ML algorithm, the number of iterations of the algorithm are compared with those of the plain
MO/ML algorithm. As shown in Table 4 and Fig. 4, the number of reanalysis of improved MO/ML algorithm is
much less than those of the plain MO/ML algorithm. In the improved MO/ML algorithm, efficient reanalysis
technique is introduced to decrease the number of analyses, whereas it is not in the plain algorithm. It may be
noted in this example that applying the improved MO/ML algorithm could reduce a large number of analyses.
Moreover, noting that the more a large scale structure is to be optimized, the more efficient optimization algorithm
is required, it may be stated that the improved MO/ML algorithm is expected to be a lot more efficient in the
optimization of these large-scale structures, compared with the available algorithm.

Taplg 4. Results of Optimum Design of Improved and Plain MO/ML Algorithm ( =038, =02)

L Building Moment of Weight Energ Number of
AlGothm | “Story | Inertiatcm) M B b & 9 (N | Anahyis
1 14327000] 7980 1774 168 104
3 106779.90] 8000 1545 128 104
3 8735193 7872 1310 110 1.02
planMOML |4 6591284] 7165 1415 1.00 0.93
Algorithm 5 4740420] 6671|1131 100 087
8 3188536] 5790|137 1.00 075| 008867 | 83824 155
tnital value 1 |7 1833683 4950 925 100 065
8 9579.79] 3636 933 1.00 050
5 Q%77 B0 500 100 050
10 23184 813 500 1,00 050
1 14865540 8000] 1153 265 104
2 12730660] 8000 1358 183 103
3 10353420 8000 1202 139 103
panMoML |4 7335372 7549] 184 112 097
Algorithm 5 4752573 6735 1021 1.06 087
6 3000862] 6001 725 1.24 078 843872 | 72142 %
Inttial value 2 7 14795.02 49.65 5.00 125 0.66
8 5100.75] 3.2 500 100 0.50
3 169.20]  18.17 500 100 050
10 %6851 879 500 100 050
1 15505430, 8000 73.06 146 103
2 721770 8000 1748 126 04
Improved 3 90894.30] 7902 849 176 103
MOML 2 6612780] 7217|1312 100 094
Algorithm 5 4513424 6315 1355 100 082
6 2810078] 5759 939 100 075| 842572 | 7618 %
Initial value 1 7 14349.50 47.27 758 1.00 063
8 620867 3743 567 1.00 050
9 6340|1842 500 100 050
10 237.18 823 500 1.00 050
1 148655.40] 8000|1153 265 104
2 12730660] 8000 1358 18 103
3 103634.20] 8000 1202 139 103
m%’%‘id 4 73353.72 75.19 194 112 097
: 5 4752573 6735 1021 1.06 087
Algorthm 6 3000862 6001 725 124 078 843872 | 69214 12
nitalvale2 |7 1479502 4965 500 125 066
8 510075] 3522 500 1.00 050
9 169.20] 1847 500 1.00 050
10 266.51 879 500 1.00 050
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Fig. 4. Comparison of Optimum Results Fig. 5. Convergence History Diagram
using Two Algorithm

5. Conclusion

In the paper, an improved MO/ML algorithm is proposed for the multi-objective and multi-level optimization using
sensitivity analysis of dynamic properties. To optimize steel frames under seismic load, dynamic analysis is
required to evaluate frequency constraint and the structural strain energy of the multi-objective function. Since
dynamic analyses are time-consuming, an approximation technique using sensitivity analysis is proposed to
increase the convergence efficiency. In the improved MO/ML algorithm, an artificial constraint deletion technique is
also introduced to increase robustness and efficiency of the algorithm by overcoming the drawback of the
frequency constraints in the plain MO/ML algorithm.

In order to demonstrate robustness and efficiency of the improved MO/ML algorithm, a ten-story and one-bay
steel frame is used as the numerical example, and the optimum results of the proposed algorithm are compared
with those of the plain MO/ML algorithm. Based on the results of the application example, it may be concluded that
the improved MO/ algorithm is considerably more efficient and robust than the plain MO/ML method. Therefore,
it may be argued that the improved MO/ML algorithm proposed in this study may be successfully applied to large-
scale structural optimization problems with robustness and efficiency.
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