• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.029 seconds

Fimite Element Analysis for Shell Surface using R-adativity (R-adptivity 기법을 이용한 쉘 곡면의 유한요소해석)

  • 전성기;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.311-318
    • /
    • 2001
  • The R-adaptivity method to the shell surface which is presented by the NURBS is proposed. The r-adaptiivty method , given by Liao and Anderson〔2〕, aggregate the grid in the region where is relatively high weight function without any grid-tanggling. In numerical examples, the strain energy error estimate of shell in the whole domain can be reduced effectively by using applied r- adaptivity method mesh.

  • PDF

Optimal Design of Two-Span Steel Box Girder Bridges by LRFD (LRFD에 의한 2경간 강박스형교 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.173-180
    • /
    • 2001
  • In this study steel box girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height, web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. We studied the results of steel box girders and compared with those of 1-type girders. The main program is coded with C++ and connected with optimization modul ADS. which is coded with FORTRAN.

  • PDF

Development of Optimization Design Programs for Composite Beams (합성보의 최적설계 프로그램 개발)

  • 구민세;김긍환;유영찬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.91-94
    • /
    • 1990
  • The object of this study is to develop computer programs with which ordinary engineers can analyse or design steel-concrete composite teams using optimization technique. Various design ana construction techniques which could maximize load carrying capacities and control concrete tension cracks effectively are studied and included in the programs. Analysis results show that proposed construction techniques can reduce steel weight by about 10%∼20% compared with ordinary composite beam. Concrete tensile stresses can also be controlled affectively by the suggested techniques.

  • PDF

Minimum Weight Desing of Midship Structure Using Optimization Technuque (최적화 기법을 이용한 선체중앙단면의 최소중량설계)

  • J.G.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.4
    • /
    • pp.46-54
    • /
    • 1980
  • The ship structural design problem is formulated as a general nonlinear optimization problem with constraints. Characteristics of the general structural problems and various optimization techniques are discussed, with special emphasis on penalty function method for constrained problems. A simple example of the solution of a midship structure design of cargo vessel, which complies with the rules of the Korean Register of Shipping is shown using SUMT-exterior method with some search methods.

  • PDF

A 3-D Structural Analysis of Composite Sabot (복합재 이탈피의 3차원 구조해석)

  • 이성호;이강우;박관진;송흥섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-72
    • /
    • 2003
  • Composite sabot can increase the penetration performance of APFSDS projectile by reduction of the sabot weight. However, it has a thick-sectioned lamination and the lamination structure is different from those of the conventional composite parts. In this study, modeling technique for a thick and radially-laminated composite part has been applied in the finite element analysis of composite sabot. Four models of composite lamination for the sabot have been proposed and evaluated for their structural strength.

Design and Fabrication of Pultruded Composite Bridge Deck (인발성형 복합소재 교량 바닥판의 설계 및 제작)

  • 이성우;이선구;송충한;박성용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.241-248
    • /
    • 2002
  • Due to many advantages such as light weight, fast installation, high durability, composite bridge deck is considered to be one of the promissing alternatives to concrete bridge deck. The paper presents procedures of finite element analysis and laminate design for composite bridge deck of triangular shape for DB24 load. After design of the section glass reinforced composite deck tube of double triangular section with 200mm profile was fabricated with pultrusion and the procedure are presented.

  • PDF

A Structural Analysis on the Light Rail Vehicle Body with Composite Material (복합재료 경전철의 차체구조 해석)

  • 이영신;김재훈;이호철;길기남;박병준
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.437-446
    • /
    • 1999
  • The structural behavior of the composite material light rail vehicle body are investigated. Composite material is very useful for light rail vehicle structure due to its high specific strength and lightweight characteristics. The main carbody is made of aluminum alloy. The side wall and roof with composite panels can reduce total vehicle weight about 2000kg. In addition, with the lower density of the foam, enhances lightness in the panel and to save the operation expenses. The finite element analysis code, ANSYS is used to evaluate the stability of the body structure under the various load conditions.

  • PDF

Structural analysis of Aluminium coach body (알루미늄 객차의 구조강도 해석)

  • 이정수;서승일;이기열
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.583-588
    • /
    • 1998
  • Large extrusions of aluminium alloy can be more general and useful as structural material of rolling stocks to reduce weight and labor cost than mild steel and stainless steel. Our company is studying aluminium coach body will be made of 6005A and A5083 alloy. In this paper, at first detailed finite element analysis is carried out to calculate the orthotropic material properties of aluminium extrusions. And then global strength evaluation of coach body is carried out according to UIC 566 OR code.

  • PDF

Tensile Failure and Buckling Load Improvement of Composite Plates With A Central Hole (원공이 있는 복합재료 평판의 인장파단 및 좌굴 하중 개선)

  • 이호형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.242-245
    • /
    • 1999
  • In aerospace industry improvement of structural performance of flight structure without increasing weight has great advantage. In this study, an innovative design method to increase the buckling load and tension failure load at the same time without increasing the weight was investigated by using the curvilinear fiber format in composite plates with central hole. It was investigated how much gain can be obtained with curvilinear fiber format for the plates with different hole size and different stacking sequence.

  • PDF

Shape Design for a Inline-Skate Frame (인 라인 스케이트 프레임의 형상 설계)

  • Kim S.C.;Jee H.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • In-line skate generally consists of four major parts: boot, frame, bearing and wheel, and the most important part among those for necessary functionality is the frame. It is the most expensive, and it also makes a decisive role in practical race skating. The functional behavior of a frame is greatly affected by external dynamic forces as well as the static weight of a skater. We are proposing a new inline speed-skating frame design that has been improved in structural strength and weight for providing optimum speed in $20\sim40km$ marathon skating.