• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.033 seconds

Structural Determination of Cerebrosides from Soybean Embryo by Mass Spectrometer (Mass Spectrometer를 이용한 대두 배아 출추 Cerebroside의 구조 분석)

  • Kim, Jung-Hun;Chang, Sug-Youn;Kim, Yeo-Kyung
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.335-343
    • /
    • 1993
  • The structure of cerebrosides from soybean embryo was determined using fast atom bombardment mass spectrometer (FAB-MS), gas chromatography mass spectrometer (GC-MS) and TLC. The components of cerebroside were determined by GC-MS after acid hydrolysis. The molecular weight distribution of cerebroside was measured by positive mode FAB-MS with LiOH saturated 3-nitrobenzylalcohol(3-NBA) matrix. Structures of individual components of complex mixtures can be determined easily by this process. The major constituent of soybean extracted cerebroside was determined as the glucoside of N-2'-hydroxypalmitoyl-sphingadienine.

  • PDF

Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review

  • Khan, Shafi Ullah;Kim, Jang-Kyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.115-133
    • /
    • 2011
  • Fiber reinforced polymer composites (FRPs) are being increasingly used for a wide range of engineering applications owing to their high specific strength and stiffness. However, their through-the-thickness performance lacks some of the most demanding physical and mechanical property requirements for structural applications, such as aerospace vehicles and military components. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs), due to their excellent mechanical, thermal and electrical properties, offer great promise to improve the weak properties in the thickness direction and impart multi-functionality without substantial weight addition to FRPs. This paper reviews the progress made to date on i) the techniques developed for integration of CNTs/ CNFs into FRPs, and ii) the effects of the addition of these nanofillers on the interlaminar properties, such as such interlaminar shear strength, interlaminar fracture toughness and impact damage resistance and tolerance, of FRPs. The key challenges and future prospects in the development of multiscale CNT-FRP composites for advanced applications are also highlighted.

A Study on the Typhoon Disaster of Greenhouse (시설원예용 플라스틱 하우스의 태풍피해에 관한 연구)

  • 윤용철;서원명;윤충섭
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 1995
  • This study was carried out to find a way of improving the windproof capability of greenhouse foundations. Generally, greenhouses are often collapsed due to the strong winds, because they are very light weight structures. In such a critical situations, the foundations are very often subjected to uplift and vibration at the same time. This paper describes both the wind disaster of greenhouses by the typhoon FAEY and the uplift resistance of greenhouse foundations. Followings are the results obtained from this study ; Judging from the view point of year round cultural aspects, it is recommended that some measures be taken for the preventions of greenhouse film ruptures because greenhouse structural damages are found to be directly associated with the local rupture of cover film. In the case of surveyed area, movable pipe-houses or pipe-houses of 1-2W type were found to be completely destroyed when the maximum instantaneous wind velocity was over 30m/sec or so. In the case of movable pipe-houses, the uplift resistance of greenhouse was expected to increase with the increase of pipe diameter and/or the embedment pipe length. But at present situations there is a limitation in raising the uplift resistance of movable pipe-house, because pipe diameters as well as pipe lengths customarily selected by farmers are quite a much limited.

  • PDF

Research on Aircraft Lightning Protection Design and Certification of Fuel System in Composite Material (복합재항공기 연료시스템의 낙뢰보호설계 및 인증 연구)

  • Lee, Young-jae;Cho, Wonil;Jeon, Jeonghwan;Koh, Jinhwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.130-140
    • /
    • 2017
  • Lightning protective design of an aircraft fuel system is closely related to the safety of the flight. Recently, composite material in building an aircraft becomes more important because it can reduce the weight of the aircraft. The composite materials decrease the protection against the effect of lightning. Lightning protective design of metal material aircraft has been researched for a long time and the design technique has been announced widely. However, research on the lightning protective design using composite material aircraft is very limited. In this study, lightning protective design for fuel tank structural component, access cover, fuel filler cap and drain valve in carbon fiber composite material aircraft have been presented. To show the compliance with FAA airworthiness standard regarding the presented protection designs, three steps, including lightning strike analysis, lightning environment analysis and certification test, were conducted in accordance with FAA AC 20-53.

Reduction of Structure-borne Idle Noise with the Insertion of a Composite Body inside Vehicle Body Skeleton (차체골격내 복합체 삽입을 이용한 구조기인 아이들 소음저감)

  • Kim, Hyo-Sig;Kim, Joong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • As a matter of fact, it has been not allowed to modify the shape of a vehicle body skeleton since the technical definition for the structure was fixed and the corresponding molds were developed. By the way, if it is available to apply an alternative to reinforce the skeleton without changing its mold, it must be much flexible to improve the performance qualities relevant to not only NVH(noise, vibration and harshness) but also crash and durability. Recently, a solution of so-called composite body becomes available for the need. We present a design method to insert the composite body inside a vehicle body skeleton in order to improve a structure-borne noise at the idle condition. The algorithms, topology optimization and design sensitivity analysis, are applied to mainly search the sensitive structural sections in the body skeleton and to extract the target stiffness of the sections. Inserting the composite bodies into the sensitive portions, it is predicted to achieve the countermeasures which can compromize the design availability in terms of the idle noise and weight. According to the validation result with test vehicles, the concerned noise transfer function is reduced and the idle booming noise is resultantly improved.

Genotoxicity Studies of Chrysin (Chrysin의 유전독성에 관한 연구)

  • Jee Seungwan;Kim Changhwan;Park Misun;Eom Miok;Ryeom Taikyung;Kim Okhee;Kang Hoil
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2005
  • Chrysin (5,7-dihydroxyflavone) is a flavonoid compound contained in many fruits, vegetables and honey. In our experiment, we investigated genotoxicity of chrysin using bacterial reverse mutation assay, chromosomal aberration test, in vivo micronucleus test. In bacterial reverse mutation assay, chrysin did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA102 with and without metabolic activation. In chromosome aberration test, chrysin did not also induce structural and numerical abberations regardless of metabolic activation in Chinese hamster lung fibroblast cells. In mouse micronucleus test, no significant increase in the occurrence of micronucleated polychromatic erythrocytes (MNPCE) was observed in ICR male mice orally administered with chrysin at the dose of 0.5, 1.0, 2.0 g/kg body weight. Taken together these results, chrysin has no mutagenic potential in our experiment.

A Review on Use of Carbohydrate-based Fillers and Pigments in Packaging Paper

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.155-161
    • /
    • 2016
  • As one of traditional packaging materials, paper and paperboard are being more popular and beneficial thanks to their environmental sustainability and have been widely used in packaging applications, from light weight infusible tissue for tea/coffee bags to heavy duty boards for the distribution. Papermakers have to design the products having a desired customized function with their paper machine. Globally, the use of filler and pigment in papermaking is now a very common practice to meet the needs of customers. Many benefits can be achieved as a result of filler addition, which mainly includes cost and energy savings. The replacement of traditional mineral fillers and pigments with biodegradable and renewable carbohydrate polymers is a very interesting and promising research topic due to the concern of environmental impact. In this review paper, the use of traditional and novel carbohydrate fillers and pigments in cellulosic paper is highlighted. It is noteworthy that there are still some challenges and technical barriers associated with the use of these organic materials in point of structural stabilities and manufacturing costs, although most of them are available in market as the commercialized products. With the emerging nanotechnologies, it is believed that the use of carbohydrate-based filler and pigment for papermaking will increase and bring technical advantages to industry.

Design of a Six-Axis Force/Moment Sensor using Analytical Method for Humanoid Robot Foot Module (인간형 로봇의 발 모듈 개발을 위한 분석적 방법의 6 축 힘 / 모멘트 센서 설계)

  • Yuan, Chao;Lim, Dong Hwan;Luo, Lu Ping;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.359-367
    • /
    • 2015
  • The forces and moments exerted on humanoid robot foot are important information for controlling or monitoring the robot. Multi-axis force/moment sensor can be installed under humanoid robot foot to measure forces and moments. The sensor should have large stiffness to support the robot weight and small size not to disturb the motion of the robot. In this paper, we designed a 6-aixs force/moment sensor which has good accuracy, large measuring range, and new compact structure. In addition, the proposed sensor is evaluated using analytical method and FEM(Finite Elements Method) method. Finally, it turned out that it has good performance.

Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft (일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측)

  • Lee, Ho-Jin;Guk, Dae-Sun;Ahn, Dong-Gyu;Jung, Jong-Hoon;Seol, Sang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

Effect of Loading Path on the Hydroformability of a Three-layered Tube for Fabrication of a Hollow Part (중공품 성형시 삼중관의 액압성형성에 미치는 압력경로의 영향)

  • Han, S.W.;Kim, S.Y.;Joo, B.D.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • Tube hydroforming is a technology that utilizes hydraulic pressure to form a tube into desired shapes inside die cavities. Due to its advantages, such as weight reduction, increased strength, improved quality, and reduced tooling cost, single-layered tube hydroforming is widely used in industry. However in some special applications, it is necessary to produce multi-layered tubular components which have corrosion resistance, thermal resistance, conductivity, and abrasion resistance. In this study, a hollow forming process to fabricate a part from multi-layered tubes for structural purposes is proposed. To accomplish a successful hydroforming process, an analytical model that predicts optimal load path for various parameters such as tube material properties, thickness of tubes, diameter of holes and the number of holes was developed. Tubular hydroforming experiments to fabricate a hollow part were performed and the optimal loading path developed by the analytical model was successfully verified. The results show that the proposed hydroforming process can effectively produce hollow parts with multi-layered tube without defects such as wrinkling or fracture.