References
- Abe, T., Hayashi, K., Sato, T., Yamane, S., and Hirokawa, T. (2003). A-VARTM process and z-anchor technology for primary aircraft structures. Proceedings of the 24th SAMPE Europe International Conference, Paris, France.
- Abot, J. L., Song, Y., Schulz, M. J., and Shanov, V. N.(2008). Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties. Composites Science and Technology, 68, 2755- 2760. https://doi.org/10.1016/j.compscitech.2008.05.023
- Abrate, S. (1991). Impact on laminated composite materials. Applied Mechanics Reviews, 44, 155-190. https://doi.org/10.1115/1.3119500
- Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 265, 1212- 1214. https://doi.org/10.1126/science.265.5176.1212
- Arai, M., Noro, Y., Sugimoto, K. i., and Endo, M. (2008). Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 68, 516-525. https://doi.org/10.1016/j.compscitech.2007.06.007
- Avila, A. F., Soares, M. I., and Silva Neto, A. (2007). A study on nanostructured laminated plates behavior under lowvelocity impact loadings. International Journal of Impact Engineering, 34, 28-41. https://doi.org/10.1016/j.ijimpeng.2006.06.009
- Barbezat, M., Brunner, A. J., Necola, A., Rees, M., Gasser, P., and Terrasi, G. (2009). Fracture behavior of GFRP laminates with nanocomposite epoxy resin matrix. Journal of Composite Materials, 43, 959-976. https://doi.org/10.1177/0021998308100799
- Bekyarova, E., Thostenson, E. T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H. T., Chou, T. W., Itkis, M. E., and Haddon, R. C. (2007). Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir, 23, 3970-3974. https://doi.org/10.1021/la062743p
- Bethune, D. S., Kiang, C. H., De Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607. https://doi.org/10.1038/363605a0
-
Bhuiyan, M. A., Hosur, M. V., and Jeelani, S. (2009). Lowvelocity impact response of sandwich composites with nanophased foam core and biaxial (
${\times}45^{\circ}C$ ) braided face sheets. Composites Part B: Engineering, 40, 561-571. https://doi.org/10.1016/j.compositesb.2009.03.010 - Bibo, G. A. and Hogg, P. J. (1996). The role of reinforcement architecture on impact damage mechanisms and postimpact compression behaviour. Journal of Materials Science, 31, 1115-1137. https://doi.org/10.1007/BF00353091
- Blanco, J., Garcia, E. J., Guzman De Villoria, R., and Wardle, B. L. (2009). Limiting mechanisms of mode i interlaminar toughening of composites reinforced with aligned carbon nanotubes. Journal of Composite Materials, 43, 825-841. https://doi.org/10.1177/0021998309102398
- Brown, R. T. and Crow, E. C., Jr. (1992). Automatic throughthe- thickness braiding. The 37th International SAMPE Symposium and Exhibition, Anaheim, CA. pp. 832-842.
- Cantwell, W. J. and Morton, J. (1991). The impact resistance of composite materials-a review. Composites, 22, 347-362. https://doi.org/10.1016/0010-4361(91)90549-V
- Cesano, F., Bertarione, S., Scarano, D., and Zecchina, A. (2005). Connecting carbon fibers by means of catalytically grown nanofilaments: formation of carbon-carbon composites. Chemistry of Materials, 17, 5119-5123. https://doi.org/10.1021/cm050427a
- Chandrasekaran, V. C. S., Advani, S. G., and Santare, M. H. (2010). Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites. Carbon, 48, 3692-3699. https://doi.org/10.1016/j.carbon.2010.06.010
- Chang, P., Mouritz, A. P., and Cox, B. N. (2007). Flexural properties of z-pinned laminates. Composites Part A: Applied Science and Manufacturing, 38, 244-251. https://doi.org/10.1016/j.compositesa.2006.05.004
- Choi, J. S., Lim, S. T., Choi, H. J., Hong, S. M., Mohanty, A. K., Drzal, L. T., Misra, M., and Wibowo, A. C. (2005). Rheological, thermal, and morphological characteristics of plasticized cellulose acetate composite with natural fibers. Macromolecular Symposia, 224, 297-307. https://doi.org/10.1002/masy.200550626
- Davis, D. C. and Whelan, B. D. (2011). An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Composites Part B: Engineering, 42, 105-116. https://doi.org/10.1016/j.compositesb.2010.06.001
- Dickinson, L. C., Farley, G. L., and Hinders, M. K. (1999). Prediction of effective three-dimensional elastic constants of translaminar reinforced composites. Journal of Composite Materials, 33, 1002-1029. https://doi.org/10.1177/002199839903301104
- Donnet, J. B., Wang, T. K., Peng, J. C. M., and Rebouillat, S. (1998). Carbon Fibers. 3rd ed. New York: Marcel Dekker.
- Downs, W. B. and Baker, R. T. K. (1995). Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers. Journal of Materials Research, 10, 625-633. https://doi.org/10.1557/JMR.1995.0625
- Dransfield, K., Baillie, C., and Mai, Y. W. (1994). Improving the delamination resistance of CFRP by stitching-a review. Composites Science and Technology, 50, 305-317. https://doi.org/10.1016/0266-3538(94)90019-1
- Dransfield, K. A., Jain, L. K., and Mai, Y. W. (1998). On the effects of stitching in CFRPs-I. Mode I delamination toughness. Composites Science and Technology, 58, 815-827. https://doi.org/10.1016/S0266-3538(97)00229-7
- Du, J. H., Bai, J., and Cheng, H. M. (2007). The present status and key problems of carbon nanotube based polymer composites. Express Polymer Letters, 1, 253-273. https://doi.org/10.3144/expresspolymlett.2007.39
- Fan, Z. and Advani, S. G. (2005). Characterization of orientation state of carbon nanotubes in shear flow. Polymer, 46, 5232-5240. https://doi.org/10.1016/j.polymer.2005.04.008
- Fan, Z., Santare, M. H., and Advani, S. G. (2008). Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39, 540-554. https://doi.org/10.1016/j.compositesa.2007.11.013
- Fiedler, B., Gojny, F. H., Wichmann, M. H. G., Nolte, M. C. M., and Schulte, K. (2006). Fundamental aspects of nanoreinforced composites. Composites Science and Technology, 66, 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
- Ganguli, S., Bhuyan, M., Allie, L., and Aglan, H. (2005). Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. Journal of Materials Science, 40, 3593-3595. https://doi.org/10.1007/s10853-005-2891-x
- Garcia, E. J., Wardle, B. L., and John Hart, A. (2008a). Joining prepreg composite interfaces with aligned carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39, 1065-1070. https://doi.org/10.1016/j.compositesa.2008.03.011
- Garcia, E. J., Wardle, B. L., John Hart, A., and Yamamoto, N. (2008b). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology, 68, 2034-2041. https://doi.org/10.1016/j.compscitech.2008.02.028
- Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S. V., van Vuure, A. W., Gorbatikh, L., Moldenaers, P., and Verpoest, I. (2009). Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/ epoxy composites. Carbon, 47, 2914-2923. https://doi.org/10.1016/j.carbon.2009.06.039
- Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W., and Schulte, K. (2005a). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 36, 1525-1535. https://doi.org/10.1016/j.compositesa.2005.02.007
- Gojny, F. H., Wichmann, M. H. G., Fiedler, B., and Schulte, K. (2005b). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study. Composites Science and Technology, 65, 2300-2313. https://doi.org/10.1016/j.compscitech.2005.04.021
- Green, K. J., Dean, D. R., Vaidya, U. K., and Nyairo, E. (2009). Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Composites Part A: Applied Science and Manufacturing, 40, 1470-1475. https://doi.org/10.1016/j.compositesa.2009.05.010
- Gryshchuk, O., Karger-Kocsis, J., Thomann, R., Konya, Z., and Kiricsi, I. (2006). Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Composites Part A: Applied Science and Manufacturing, 37, 1252-1259. https://doi.org/10.1016/j.compositesa.2005.09.003
- Hirai, Y., Hamada, H., and Kim, J. K. (1998a). Impact response of woven glass-fabric composites - I. Effect of fibre surface treatment. Composites Science and Technology, 58, 91-104. https://doi.org/10.1016/S0266-3538(97)00111-5
- Hirai, Y., Hamada, H., and Kim, J. K. (1998b). Impact response of woven glass-fabric composites - II. Effect of temperature. Composites Science and Technology, 58, 119- 128. https://doi.org/10.1016/S0266-3538(97)00112-7
- Hiroi, R., Ray, S. S., Okamoto, M., and Shiroi, T. (2004). Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromolecular Rapid Communications, 25, 1359-1364. https://doi.org/10.1002/marc.200400173
- Hojo, M., Ando, T., Tanaka, M., Adachi, T., Ochiai, S., and Endo, Y. (2006a). Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. International Journal of Fatigue, 28, 1154-1165. https://doi.org/10.1016/j.ijfatigue.2006.02.004
- Hojo, M., Matsuda, S., Tanaka, M., Ochiai, S., and Murakami, A. (2006b). Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates. Composites Science and Technology, 66, 665-675. https://doi.org/10.1016/j.compscitech.2005.07.038
- Hosur, M. V., Mohammed, A. A., Zainuddin, S., and Jeelani, S. (2008). Processing of nanoclay filled sandwich composites and their response to low-velocity impact loading. Composite Structures, 82, 101-116. https://doi.org/10.1016/j.compstruct.2006.12.009
- Hsiao, K. T., Alms, J., and Advani, S. G. (2003). Use of epoxy/ multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology, 14, 791-793. https://doi.org/10.1088/0957-4484/14/7/316
- Hung, K. H., Tzeng, S. S., Kuo, W. S., Wei, B., and Ko, T. H. (2008). Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition. Nanotechnology, 19, 295602. https://doi.org/10.1088/0957-4484/19/29/295602
- Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Inam, F., Wong, D. W. Y., Kuwata, M., and Peijs, T. (2010). Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. Journal of Nanomaterials, 2010, 453420.
- Iqbal, K., Khan, S. U., Munir, A., and Kim, J. K. (2009). Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Composites Science and Technology, 69, 1949- 1957. https://doi.org/10.1016/j.compscitech.2009.04.016
- Isayev, A. I., Kumar, R., and Lewis, T. M. (2009). Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polymer, 50, 250-260. https://doi.org/10.1016/j.polymer.2008.10.052
- Joshi, M. and Butola, B. S. (2004). Polymeric nanocomposites-polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. Journal of Macromolecular Science-Polymer Reviews, 44, 389-410. https://doi.org/10.1081/MC-200033687
- Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., and Paipetis, A. (2009). Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. Journal of Composite Materials, 43, 977- 985. https://doi.org/10.1177/0021998308097735
- Kepple, K. L., Sanborn, G. P., Lacasse, P. A., Gruenberg, K. M., and Ready, W. J. (2008). Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon, 46, 2026-2033. https://doi.org/10.1016/j.carbon.2008.08.010
- Khan, S. U., Iqbal, K., Munir, A., and Kim, J. K. (2011a). Quasi-static and impact fracture behaviors of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 42, 253-264. https://doi.org/10.1016/j.compositesa.2010.11.011
- Khan, S. U. and Kim, J. K. (2011). Interlaminar shear properties of CFRP composites with CNF-bucky paper interleaves. The 18th International Conference on Composite Materials, Jeju, Korea.
- Khan, S. U., Li, C. Y., Siddiqui, N. A., and Kim, J. K. (2011b). Vibration damping characteristics of carbon fiber-reinforced composite containing multi-walled carbon nanotubes. Composites Science and Technology In press.
- Khan, S. U., Munir, A., Hussain, R., and Kim, J. K. (2010). Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay. Composites Science and Technology, 70, 2077-2085. https://doi.org/10.1016/j.compscitech.2010.08.004
- Kim, J. K., Baillie, C., Poh, J., and Mai, Y. W. (1992). Fracture toughness of CFRP with modified epoxy resin matrices. Composites Science and Technology, 43, 283-297. https://doi.org/10.1016/0266-3538(92)90099-O
- Kim, J. K. (1998). Methods for improving impact damage resistance of CFRPs. Key Engineering Materials, 141-143, 149-168. https://doi.org/10.4028/www.scientific.net/KEM.141-143.149
- Kim, J. K., MacKay, D. B., and Mai, Y. W. (1993). Dropweight impact damage tolerance of CFRP with rubbermodified epoxy matrix. Composites, 24, 485-494. https://doi.org/10.1016/0010-4361(93)90018-4
- Kim, J. K. and Mai, Y. W. (1998). Engineered Interfaces in Fiber Reinforced Composites. 1st ed. New York: Elsevier Sciences.
- Kim, J. K. and Sham, M. L. (2000). Impact and delamination failure of woven-fabric composites. Composites Science and Technology, 60, 745-761. https://doi.org/10.1016/S0266-3538(99)00166-9
- Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., and Paipetis, A. (2010). Impact and afterimpact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Composites Science and Technology, 70, 553-563. https://doi.org/10.1016/j.compscitech.2009.11.023
- Li, J. and Kim, J. K. (2007). Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Composites Science and Technology, 67, 2114-2120. https://doi.org/10.1016/j.compscitech.2006.11.010
- Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y., and Fukunaga, H. (2009). Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Composites Part A: Applied Science and Manufacturing, 40, 2004-2012. https://doi.org/10.1016/j.compositesa.2009.09.002
- Liao, F. S., Su, A. C., and Hsu, T. C. J. (1994). Vibration damping of interleaved carbon fiber-epoxy composite beams. Journal of Composite Materials, 28, 1840-1854. https://doi.org/10.1177/002199839402801806
- Ma, P. C. and Kim, J. K. (2011). Carbon Nanotubes for Polymer Reinforcement. Boca Raton, FL: Taylor & Francis.
- Ma, P. C., Kim, J. K., and Tang, B. Z. (2007). Effects of silane functionalization on the properties of carbon nanotube/ epoxy nanocomposites. Composites Science and Technology, 67, 2965-2972. https://doi.org/10.1016/j.compscitech.2007.05.006
- Ma, P. C., Siddiqui, N. A., Marom, G., and Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41, 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
- Ma, P. C., Wang, S. Q., Kim, J. K., and Tang, B. Z. (2009). In-situ amino functionalization of carbon nanotubes using ball milling. Journal of Nanoscience and Nanotechnology, 9, 749-753. https://doi.org/10.1166/jnn.2009.C017
- Meguid, S. A. and Sun, Y. (2004). On the tensile and shear strength of nano-reinforced composite interfaces. Materials and Design, 25, 289-296. https://doi.org/10.1016/j.matdes.2003.10.018
- Mohanty, A. K., Wibowo, A., Misra, M., and Drzal, L. T. (2003). Development of Renewable Resource-Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of Cellulosic Plastics. Polymer Engineering and Science, 43, 1151-1161. https://doi.org/10.1002/pen.10097
- Moniruzzaman, M., Du, F., Romero, N., and Winey, K. I. (2006). Increased flexural modulus and strength in SWNT/ epoxy composites by a new fabrication method. Polymer, 47, 293-298. https://doi.org/10.1016/j.polymer.2005.11.011
- Mouritz, A. P. (2007). Review of z-pinned composite laminates. Composites Part A: Applied Science and Manufacturing, 38, 2383-2397. https://doi.org/10.1016/j.compositesa.2007.08.016
- Mouritz, A. P., Bannister, M. K., Falzon, P. J., and Leong, K. H. (1999). Review of applications for advanced threedimensional fibre textile composites. Composites Part A: Applied Science and Manufacturing, 30, 1445-1461. https://doi.org/10.1016/S1359-835X(99)00034-2
- Mylavarapu, P. and Woldesenbet, E. (2010). Effect of nanoclay incorporation on the impact properties of adhesively bonded composite structures. Journal of Adhesion Science and Technology, 24, 389-405. https://doi.org/10.1163/016942409X12541266699554
- Nussbaumer, R. J., Caseri, W. R., and Smith, P. (2006). Reversible photochromic properties of TiO2-polymer nanocomposites. Journal of Nanoscience and Nanotechnology, 6, 459-463. https://doi.org/10.1166/jnn.2006.923
- Qian, H., Bismarck, A., Greenhalgh, E. S., Kalinka, G., and Shaffer, M. S. P. (2008). Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level. Chemistry of Materials, 20, 1862- 1869. https://doi.org/10.1021/cm702782j
- Qiu, J., Zhang, C., Wang, B., and Liang, R. (2007). Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology, 18, 275708. https://doi.org/10.1088/0957-4484/18/27/275708
- Rao, C. N. R., Deepak, F. L., Gundiah, G., and Govindaraj, A. (2003). Inorganic nanowires. Progress in Solid State Chemistry, 31, 5-147. https://doi.org/10.1016/j.progsolidstchem.2003.08.001
- Reeder, J. R. (1995). Stitching vs. a toughened matrix: compression strength effects. Journal of Composite Materials, 29, 2464-2487. https://doi.org/10.1177/002199839502901805
- Rojas-Chapana, J. A. and Giersig, M. (2006). Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. Journal of Nanoscience and Nanotechnology, 6, 316-321. https://doi.org/10.1166/jnn.2006.905
- Romhany, G. and Szebenyi, G. (2009). Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites. Express Polymer Letters, 3, 145-151. https://doi.org/10.3144/expresspolymlett.2009.19
- Sadeghian, R., Gangireddy, S., Minaie, B., and Hsiao, K. T. (2006). Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites Part A: Applied Science and Manufacturing, 37, 1787-1795. https://doi.org/10.1016/j.compositesa.2005.09.010
- Sager, R. J., Klein, P. J., Lagoudas, D. C., Zhang, Q., Liu, J., Dai, L., and Baur, J. W. (2009). Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Composites Science and Technology, 69, 898-904. https://doi.org/10.1016/j.compscitech.2008.12.021
- Siddiqui, N. A., Khan, S. U., Li, C. Y., Ma, P. C., and Kim, J. K. (2011). Manufacturing and characterization of CFRP prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing In press.
- Siddiqui, N. A., Woo, R. S. C., Kim, J. K., Leung, C. C. K., and Munir, A. (2007). Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 38, 449-460. https://doi.org/10.1016/j.compositesa.2006.03.001
- Singh, S. and Partridge, I. K. (1995). Mixed-mode fracture in an interleaved carbon-fibre/epoxy composite. Composites Science and Technology, 55, 319-327. https://doi.org/10.1016/0266-3538(95)00062-3
- Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science (Oxford), 35, 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
- Steeves, C. A. and Fleck, N. A. (2006). In-plane properties of composite laminates with through-thickness pin reinforcement. International Journal of Solids and Structures, 43, 3197-3212. https://doi.org/10.1016/j.ijsolstr.2005.05.017
- Sun, L., Warren, G. L., and Sue, H. J. (2010). Partially cured epoxy/SWCNT thin films for the reinforcement of vacuumassisted resin-transfer-molded composites. Carbon, 48, 2364-2367. https://doi.org/10.1016/j.carbon.2010.02.027
- Thostenson, E. T., Li, W. Z., Wang, D. Z., Ren, Z. F., and Chou, T. W. (2002). Carbon nanotube/carbon fiber hybrid multiscale composites. Journal of Applied Physics, 91, 6034- 6037. https://doi.org/10.1063/1.1466880
- Thostenson, E. T., Ren, Z., and Chou, T. W. (2001). Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 61, 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
- Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering R: Reports, 53, 73-197. https://doi.org/10.1016/j.mser.2006.06.001
- Tong, L., Mouritz, A. P., and Bannister, M. K. (2002). 3D Fibre Reinforced Polymer Composites. Boston: Elsevier. pp. 1-12.
- Tong, L., Sun, X., and Tan, P. (2008). Effect of long multiwalled carbon nanotubes on delamination toughness of laminated composites. Journal of Composite Materials, 42, 5-23. https://doi.org/10.1177/0021998307086186
- Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Tanimoto, T., and Friedrich, K. (2007). On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Composites Part A: Applied Science and Manufacturing, 38, 1159-1162. https://doi.org/10.1016/j.compositesa.2006.04.016
- Tugrul Seyhan, A., Tanoglu, M., and Schulte, K. (2008). Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Engineering Fracture Mechanics, 75, 5151-5162. https://doi.org/10.1016/j.engfracmech.2008.08.003
- Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P. M., and Ghasemi-Nejhad, M. N. (2006). Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Materials, 5, 457-462. https://doi.org/10.1038/nmat1650
- Wang, S. J., Geng, Y., Zheng, Q., and Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815-1823. https://doi.org/10.1016/j.carbon.2010.01.027
- Warrier, A., Godara, A., Rochez, O., Mezzo, L., Luizi, F., Gorbatikh, L., Lomov, S. V., VanVuure, A. W., and Verpoest, I. (2010). The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 41, 532-538. https://doi.org/10.1016/j.compositesa.2010.01.001
- Wichmann, M. H. G., Sumfleth, J., Gojny, F. H., Quaresimin, M., Fiedler, B., and Schulte, K. (2006). Glass-fibre-reinforced composites with enhanced mechanical and electrical properties - Benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics, 73, 2346- 2359. https://doi.org/10.1016/j.engfracmech.2006.05.015
- Wicks, S. S., de Villoria, R. G., and Wardle, B. L. (2010). Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology, 70, 20-28. https://doi.org/10.1016/j.compscitech.2009.09.001
- Woldesenbet, E. (2008). Low velocity impact properties of nanoparticulate syntactic foams. Materials Science and Engineering A, 496, 217-222. https://doi.org/10.1016/j.msea.2008.05.024
- Yamamoto, N., John Hart, A., Garcia, E. J., Wicks, S. S., Duong, H. M., Slocum, A. H., and Wardle, B. L. (2009). High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon, 47, 551- 560. https://doi.org/10.1016/j.carbon.2008.10.030
- Yokozeki, T., Iwahori, Y., Ishiwata, S., and Enomoto, K. (2007). Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNTdispersed epoxy. Composites Part A: Applied Science and Manufacturing, 38, 2121-2130. https://doi.org/10.1016/j.compositesa.2007.07.002
- Zhang, X., Cao, A., Li, Y., Xu, C., Liang, J., Wu, D., and Wei, B. (2002). Self-organized arrays of carbon nanotube ropes. Chemical Physics Letters, 351, 183-188. https://doi.org/10.1016/S0009-2614(01)01348-3
- Zhu, J., Imam, A., Crane, R., Lozano, K., Khabashesku, V. N., and Barrera, E. V. (2007). Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology, 67, 1509-1517. https://doi.org/10.1016/j.compscitech.2006.07.018
- Zhu, S., Su, C. H., Lehoczky, S. L., Muntele, I., and Ila, D. (2003). Carbon nanotube growth on carbon fibers. Diamond and Related Materials, 12, 1825-1828. https://doi.org/10.1016/S0925-9635(03)00205-X
Cited by
- Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers vol.9, pp.3, 2017, https://doi.org/10.1021/acsami.6b13397
- Hybrid Woven Glass Fibre Fabric-Multi-Walled Carbon Nanotube-Epoxy Composites Under Low Rate Impact vol.1, pp.1, 2017, https://doi.org/10.3390/jcs1010010
- Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites vol.9, pp.41, 2017, https://doi.org/10.1021/acsami.7b11712
- Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: A review vol.87, pp.18, 2017, https://doi.org/10.1177/0040517516669075
- Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process vol.2014, 2014, https://doi.org/10.1155/2014/830295
- Synthesis of Carbon Nanofibers on Large Woven Cloth vol.1, pp.1, 2015, https://doi.org/10.3390/c1010002
- Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites vol.38, pp.8, 2013, https://doi.org/10.1016/j.progpolymsci.2013.04.001
- Tailor Made Conductivities of Polymer Matrix for Thermal Management: Design and Development of Three-Dimensional Carbonaceous Nanostructures vol.56, pp.3, 2017, https://doi.org/10.1021/acs.iecr.6b03245
- Hybrid carbon nanotube–carbon fiber composites with improved in-plane mechanical properties vol.66, 2014, https://doi.org/10.1016/j.compositesb.2014.06.010
- Nano-engineered composites: interlayer carbon nanotubes effect vol.16, pp.3, 2013, https://doi.org/10.1590/S1516-14392013005000034
- Improving compression-after-impact performance of carbon–fiber composites by CNTs/thermoplastic hybrid film interlayer vol.95, 2014, https://doi.org/10.1016/j.compscitech.2014.01.023
- On the mechanical characterizations of unidirectional basalt fiber/epoxy laminated composites with 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carbon nanotubes–enhanced matrix vol.35, pp.5, 2016, https://doi.org/10.1177/0731684415619493
- The influence of graphene reinforced electrospun nano-interlayers on quasi-static indentation behavior of fiber-reinforced epoxy composites vol.18, pp.2, 2017, https://doi.org/10.1007/s12221-017-6700-3
- Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes vol.141, 2017, https://doi.org/10.1016/j.actaastro.2017.09.023
- Experimental determination of fracture toughness properties of nanostitched and nanoprepreg carbon/epoxy composites 2017, https://doi.org/10.1016/j.engfracmech.2017.11.033
- Mechanical and Electrical Characterization of Carbon Fiber/Bucky Paper/Zinc Oxide Hybrid Composites vol.4, pp.1, 2018, https://doi.org/10.3390/c4010006
- Enhanced delamination resistance of thick-section glass-epoxy composite laminates using compliant thermoplastic polyurethane interlayers 2018, https://doi.org/10.1016/j.compstruct.2018.01.062
- Low-Velocity Impact and Residual Burst-Pressure Analysis of Cylindrical Composite Pressure Vessels vol.50, pp.10, 2012, https://doi.org/10.2514/1.J051515
- Electromagnetic Shielding Effectiveness of a Hybrid Carbon Nanotube/Glass Fiber Reinforced Polymer Composite vol.138, pp.4, 2016, https://doi.org/10.1115/1.4033576
- Interlaminar shear properties of nanostitched/nanoprepreg aramid/phenolic composites by short beam method pp.1530-793X, 2018, https://doi.org/10.1177/0021998318811523
- Mechanical and Thermal Properties of Multi-scale Carbon Nanotubes–Carbon Fiber–Epoxy Composite vol.43, pp.11, 2018, https://doi.org/10.1007/s13369-018-3091-8
- Critical review of the factors dominating the fracture toughness of CNT reinforced polymer composites vol.6, pp.1, 2018, https://doi.org/10.1088/2053-1591/aae867
- Tensile characterization of 3D nanostitched p-aramid/phenolic MWCNTs composites vol.406, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/406/1/012032
- Fracture Toughness (Mode-I) of Para-Aramid/Phenolic Nano Preform Composites vol.25, pp.4, 2018, https://doi.org/10.1007/s10443-018-9709-x
- Mechanical Properties of Thermoplastic and Thermoset Composites Reinforced with 3D Biaxial Warp-knitted Fabrics vol.25, pp.4, 2018, https://doi.org/10.1007/s10443-018-9725-x
- Interlaminar fracture toughness of hybrid carbon fiber-carbon nanotubes-reinforced polymer composites pp.02728397, 2019, https://doi.org/10.1002/pc.25054
- The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate vol.5, pp.5, 2018, https://doi.org/10.1088/2053-1591/aac1cf
- Deformability of a woven fabric modified with in-situ grown nanofibres vol.11, pp.5, 2018, https://doi.org/10.1007/s12289-017-1384-1
- Flexural characterization of 3D prepreg/stitched carbon/epoxy/multiwalled carbon nanotube preforms and composites pp.1530-793X, 2018, https://doi.org/10.1177/0021998318787861
- Structure - Impact properties relationships of carbon fiber reinforced poly(methyl methacrylate) composite vol.40, pp.S1, 2019, https://doi.org/10.1002/pc.24665