• Title/Summary/Keyword: Structural Weight

Search Result 2,485, Processing Time 0.032 seconds

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments (실험계획법을 이용한 대형 선박용 레이더 마스트의 공진회피 설계)

  • Park, Jun Hyeong;Lee, Daeyong;Yang, Jung-Wook;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.50-60
    • /
    • 2019
  • Recently, problems with excessive vibration of the radar masts of large bulk carriers and crude oil tankers have frequently been reported. This paper explores a design method to avoid the resonance of a radar mast installed on a large ship using various design of experiment (DOE) methods. A local vibration test was performed during an actual sea trial to determine the excitation sources of the vibration related to the resonant frequency of the radar mast. DOE methods such as the orthogonal array (OA) and Latin hypercube design (LHD) methods were used to analyze the Pareto effects on the radar mast vibration. In these DOE methods, the main vibration performances such as the natural frequency and weight of the radar mast were set as responses, while the shape and thickness of the main structural members of the radar mast were set as design factors. From the DOE-based Pareto effect results, we selected the significant structural members with the greatest influence on the vibration characteristics of the radar mast. Full factorial design (FFD) was applied to verify the Pareto effect results of the OA and LHD methods. The design of the main structural members of the radar mast to avoid resonance was reviewed, and a normal mode analysis was performed for each design using the finite element method. Based on the results of this normal mode analysis, we selected a design case that could avoid the resonance from the major excitation sources. In addition, a modal test was performed on the determined design to verify the normal mode analysis results.

Development of the CFRP Automobile Parts Using the Joint Structure of the Dissimilar Material (결합부 강화구조용 탄소복합재 자동차 부품 개발)

  • Ko, Kwan Ho;Lee, Min Gu;Huh, Mongyoung
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.392-397
    • /
    • 2018
  • In this study, the development purpose is to replace steel Tie Rod of commercial vehicle to the carbon composite by a braiding process. CFRP tie rod was designed to meet the performance requirements of existing products by designing the cross section of the core for braiding weaving and the structural design of the joint between the core and the carbon fiber. The specimens were fabricated by braiding method and applied to structural analysis through test evaluation. The manufacturing process proceeded from braiding to infusion through post-curing process. The test evaluation of the final product was satisfactorily carried out by sequentially performing tensile test, torsion test, compression test and fatigue test. In addition, the weight of CFRP tie rod could be reduced by about 37% compared to existing products.

Approximate Design Optimization of Active Type Desk Support Frame for Float-over Installation Using Meta-model (메타모델을 이용한 플로트오버 설치 작업용 능동형 갑판지지프레임의 근사설계최적화)

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.31-43
    • /
    • 2021
  • In this study, approximate design optimization using various meta-models was performed for the structural design of active type deck support frame. The active type deck support frame was newly developed to facilitate both transportation and installation of 20,000 ton class offshore plant topside. Structural analysis was carried out using the finite element method to evaluate the strength performance of the active type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions that were regulated in ship classification organization. The approximate optimum design problem based on meta-model was formulated such that thickness sizing variables of main structure members were determined by achieving the minimum weight of the active type deck support frame subject to the strength performance constraints. The meta-models used in the approximate design optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. The results from approximate design optimization were compared to actual non-approximate design optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate design optimization represented the most pertinent optimum design results for the structure design of the active type deck support frame.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Improvement of the Phase Section Method for Multi-material Topology Optimization (다중 물질 위상최적설계를 위한 페이즈섹션 설계법 개선)

  • Kang, Min-sung;Kim, Cheolwoong;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.65-71
    • /
    • 2022
  • Recently, multi-material structural topology optimization is more critical because it provides reasonable solution to weight reduction challenges and can as well provide effective conceptual design. For conventional multi-material topology optimization (MMTO), the number of design variable increases when the number of candidate materials increases, and accordingly, a significant increase in computational time occurs. Therefore, MMTO with a single design variable, such as the phase section method (PSM) was proposed. This research is focused on improving the PSM, considering three major limitations: the composition ratio does not represent the area or volume ratio, design variables are not sufficiently concentrated to target values, and certain materials are created less than they are required. To address such limitations, the redefined composition ratio and adjusted parameters for better convergence are proposed. The validation of proposed modifications is verified via two- and three-dimensional numerical examples.

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Characteristics of Structural Behavior and Safety Estimation of Water Supply GFRP Pipe (상수도용 유리섬유복합관의 구조적 거동특성 및 안전성 평가)

  • Lee, Bo-Be;Lee, Seung-Sik;Joo, Hyung-Jong;Yoon, Soon-Jng
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, we present the results of experimental and analytical investigations on the structural behavior of GFRP pipes used in the water supply pipeline system. Cross-section of the pipe is consisted with two GFRP tubes and polymer mortar between the tubes. Due to the advantages such as light-weight, corrosion resistance, smooth surface, flexibility, etc., use of GFRP pipe in the water supply pipeline system is ever increasing trend. Therefore, more optimized structural design methodology should be developed. In the investigation, we conducted theoretical and analytical studies on the load versus radial deformation characteristics of GFRP pipes. In addition, ring stiffness test is also performed. Test results are compared with theoretical and analytical results and it was found that the results are agreed well within 5% of radial deformation. Finally, it was also found that the GFRP pipes used in the water supply pipeline system are strong enough to satisfy the industrial requirements.

Corrosion Inhibition Performance of Two Ketene Dithioacetal Derivatives for Stainless Steel in Hydrochloric Acid Solution

  • Lemallem, Salah Eddine;Fiala, Abdelali;Ladouani, Hayet Brahim;Allal, Hamza
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.237-253
    • /
    • 2022
  • The methyl 2-(1,3-dithietan -2- ylidene)-3-oxobutanoate (MDYO) and 2-(1,3-dithietan-2-ylidene) cyclohexane -1,3-dione (DYCD) were synthesized and tested at various concentrations as corrosion inhibitors for 316L stainless steel in 1 M HCl using weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), surface analysis techniques (SEM / EDX and Raman spectroscopy) and Functional Density Theory (DFT) was also used to calculate quantum parameters. The obtained results indicated that the inhibition efficiency of MDYO and DYCD increases with their concentration, and the highest value of corrosion inhibition efficiency was determined in the range of concentrations investigated (0.01 × 10-3 - 10-3 M). Polarization curves (Tafel extrapolation) showed that both compounds act as mixed-type inhibitors in 1M HCl solutions. Electrochemical impedance spectra (Nyquist plots) are characterized by a capacitive loop observed at high frequencies, and another small inductive loop near low frequencies. The thermodynamic data of adsorption of the two compounds on the stainless steel surface and the activation energies were determined and then discussed. Analysis of experimental results shows that MDYO and DYCD inhibitors adsorb to the metal surface according to the Langmuir model and the mechanism of adsorption of both inhibitors involves physisorption. SEM-EDX results confirm the existence of an inhibitor protective film on the stainless steel surface. The results derived from theoretical calculations supported the experimental observation.

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.