• 제목/요약/키워드: Structural System Type

검색결과 1,289건 처리시간 0.028초

내재해성이 우수한 비닐하우스골조 구조시스템 개발에 관한 연구 (A study on Development of Stress Tolerant Structural System in the Frame of Greenhouses)

  • 심종석;이춘호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권1호
    • /
    • pp.5-13
    • /
    • 2012
  • The frame of pipe greenhouses in Korea have been collapsed increasingly due to very weak in structure caused by the heavy snow and strong wind. In order to reduce the collapse of green houses, it is urgent to develop the new structural system in stress tolerant greenhouses. Therefore, this paper performed the structural analysis of greenhouse frame in accordance with snow loads and wind loads. Three type models in structural frame configuration of greenhouses, that is, existing type, diagrid type, and honeycomb type are selected. It was classfied the section shape of structural frames in greenhouses into arch style, standard style, and diagonal standard style. As a result of this paper, it was verified that the structural system of diagrid type is better than that of existing type against snow loads and wind loads in the frame of greenhouses.

Structural Design and Analysis of Connecting Part for Vertical Wind Turbine System Blade

  • Park, Hyunbum
    • 항공우주시스템공학회지
    • /
    • 제14권2호
    • /
    • pp.44-49
    • /
    • 2020
  • This work is intended to develop a flapping-type vertical wind turbine system that will be applicable to diesel generators and wind turbine generator hybrid systems. In the aerodynamic design of the wind turbine blade, parametric studies were performed to determine an optimum aerodynamic configuration. After the aerodynamic design, the structural design of the blade was performed. The major structural components of the flapping-type wind turbine are the flapping blade, the connecting part, and the stopper. The primary focus of this work is the design and analysis of the connecting part. Structural tests were performed to evaluate the blade design, and the test results were compared with the results of the analysis.

Structural Work Duration Estimation and Analysis of Tower-Type Residential Construction Project

  • Yun, Seok Heon;Kim, Sang Chul
    • Architectural research
    • /
    • 제14권3호
    • /
    • pp.109-116
    • /
    • 2012
  • In order to shorten construction duration in high-rise project, construction company tried to make various system method toward simplifying construction method and shortening construction duration. Though high-rise tower-type residential project are growing, there are few case study. Then, the data for preliminary schedule planning in high-rise tower-type residential project are rare. This purpose of research shows construction method in structural work in high-rise tower-type residential project, suggests schedule planning in structural work through case studies. The structural work in high-rise tower-type residential project was divided 1) completion of form in lower part and 2) the typical floor under penthouse. The statistical analysis were done in two parts, the data from analysis were used in simulation. Finally, researcher confirmed the difference between real construction duration and the figure from simulation. The results shows that the more construction duration is long, the less ACS's cost is low. It means the effectiveness is increasing in ACS, if the floor number is high.

슬림형 바닥시스템을 이용한 고층 복합구조의 내진성능에 관한 해석적 연구 (Analysis of Seismic Performance of Slim Flat Plate System in High-rise Hybrid Structural System)

  • 하기주;박효선;박중현;최경렬;김대중;정재광
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.77-80
    • /
    • 2005
  • Recently the construction of high-rise hybrid type building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new hybrid structural system, using slim flat plate system, is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is ,with the economy and flexibility, flat plate system in high-rise hybrid type building. But it was focused in the seismic performance for high performance flat plate system in high-rise hybrid type building. Therefore, in the study, to develop the new flat-plate system with high ductile, durable, good performance for the applications. It was evaluated the seismic performance in the critical region of slab-column connection. And then high performance flat plate system, designed by the economy and safety, was developed as a new technique in the application of high-rise hybrid type building.

  • PDF

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.

Study on design parameters of leaning-type arch bridges

  • Li, Ying;Xiao, Ru-Cheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.225-232
    • /
    • 2017
  • Leaning-type arch bridge is a new spatial structural system composed of two vertical arches and two leaning arches. So far there has been no contrast analysis of leaning type arch bridge with different systems. This paper focus on a parametric study of leaning type arch bridge with different systems to find the influential rules on structural forces and stability and to provide some reference for practical designs. The parametric analysis is conducted with different rise-to-span ratios and bending rigidities of arch ribs by comparing internal forces. The internal forces decline obviously with the increase of the rise-to-span ratio. The bending moments at the centers of the main arches and the leaning arches are sensitive to the bending rigidities of arch ribs. Parametric studies are also carried out with different structural systems and leaning angles of the leaning arch by comparing the static stability. The lateral stiffness of leaning-type arch bridge is less than the in-plan stiffness. Compared with the leaning-type arch bridge without thrust, the leaning-type arch bridge with thrust has a lower stability safety coefficient. The stability safety coefficient rises gradually with the increase of inclining angle of the leaning arch. This study shows that the rise-to-span ratio, bending rigidities of arch ribs, structural system and leaning angles of the leaning arch are all critical design parameters. Therefore, these parameters in unreasonable range should be avoided.

내재해성이 우수한 비닐하우스 부재의 단면형상 및 구조시스템에 관한 연구 (A Study on the Shape of Section in Member and Stress Tolerant Structural System in the Frame of Green Houses)

  • 심종석;한덕전
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권4호
    • /
    • pp.67-75
    • /
    • 2012
  • The damage of greenhouse has been increasing due to frequent collapse of frame in greenhouse caused by the heavy snow and strong wind. But, greenhouses are constructed by steel tube members of pipe style and pin connection of them, so these greenhouses are very weak. Therefore, this study was carried out to find the type of member section and structural frame system in stress tolerant greenhouses. The modeling types for analysis were designed in accordance with structural frame configuration and member section in greenhouse. These types of models, which are existing type, diagrid type, symmetric and asymmetric section type of frame member in greenhouse were classified. Displacement analysis varying the vertical and horizontal loads for a series of models was carried out. As a result of this paper, it was verified that the structural frame configuration of diagrid type and asymmetric type of member section is better than existing type in the frame of greenhouses against snow loads and wind loads.

Probabilistic-based prediction of lifetime performance of RC bridges subject to maintenance interventions

  • Tian, Hao;Li, Fangyuan
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.499-521
    • /
    • 2016
  • In this paper, a probabilistic- and finite element-based approach to evaluate and predict the lifetime performance of reinforced concrete (RC) bridges undergoing various maintenance actions is proposed with the time-variant system reliability being utilized as a performance indicator. Depending on their structural state during the degradation process, the classical maintenance actions for RC bridges are firstly categorized into four types: Preventive type I, Preventive type II, Strengthening and Replacement. Preventive type I is used to delay the onset of steel corrosion, Preventive type II can suppress the corrosion process of reinforcing steel, Strengthening is the application of various maintenance materials to improve the structural performance and Replacement is performed to restore the individual components or overall structure to their original conditions. The quantitative influence of these maintenance types on structural performance is investigated and the respective analysis modules are written and inputted into the computer program. Accordingly, the time-variant system reliability can be calculated by the use of Monte Carlo simulations and the updated the program. Finally, an existing RC continuous bridge located in Shanghai, China, is used as an illustrative example and the lifetime structural performance with and without each of the maintenance types are discussed. It is felt that the proposed approach can be applied to various RC bridges with different structural configurations, construction methods and environmental conditions.

항만구조물 최적설계 시스템 (Optimum Design System of Port Structures)

  • 이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.79-86
    • /
    • 1994
  • These days much efforts have made all over the world in order to develop the integrated optimum structural design system that performs automated design process composed of the analysis, optimum design, drafting, and reporting. However, these types of design systems oriented extensively to port structures are rarely found. In this paper, the integrated optimun design system applied to gravity type port structures such as quay walls and breakwaters will be briefly presented. Highly sophiscated facilities necessary in optimum structural design including analysis and optimization are integrated into one system. Several types of gravity type port structures can be designed using this system. The application to the real ports and the efficiency of this system will be finally shown.

  • PDF

다방향 채널형 단부정착장치를 이용한 CFRP판 보강 RC 보의 휨거동 (Flexural Behavior of RC Beams Strengthened with CFRP Plate Using Multi-directional Channel-type Anchorage System)

  • 홍기남;한상훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.171-180
    • /
    • 2008
  • 본 논문의 목적은 채널형 단부정착장치를 사용하여 CFRP판으로 보강한 철근콘크리트 보의 구조적 거동을 평가하는 것이다. 총 12개의 시험체를 제작하였으며, 이 중에는 보강판의 효율성을 높이기 위해 채널형 단부정착장치를 사용한 시험체와 사용하지 않은 시험체가 있다. 모든 시험체의 단면 크기는 동일하며, 주철근량과 콘크리트의 강도를 변화시켰다. 하중재하는 모든 시험체에서 4점 휨시험으로 진행되었으며, 각 재료의 변형률, 균열, 하중, 및 파괴모드가 시험 중에 측정되었다. 모든 시험체의 시험결과는 변형, 강도, 그리고 파괴모드 측면으로 분석되었다. 실험결과에 대한 분석를 통해서 채널형 단부정착장치를 사용한 RC보는 그 파괴모드가 급작스런 부착파괴에서 변형이나 강도적 측면에서 구조적 성능이 매우 향상된 연성적 파괴모드로 전환되는 것을 확인할 수 있었다.