• Title/Summary/Keyword: Structural Performance Monitoring of Bridge

Search Result 122, Processing Time 0.024 seconds

Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios

  • Peng, Zhen;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.167-179
    • /
    • 2022
  • This article develops a long-term condition assessment method for stay cables in cable stayed bridges using the monitored cable tension forces under operational condition. Based on the concept of influence surface, the matched cable tension ratio of two cables located at the same side (either in the upstream side or downstream side) is theoretically proven to be related to the condition of stay cables and independent of the positions of vehicles on the bridge. A sensor grouping scheme is designed to ensure that reliable damage detection result can be obtained even when sensor fault occurs in the neighbor of the damaged cable. Cable forces measured from an in-service cable-stayed bridge in China are used to demonstrate the accuracy and effectiveness of the proposed method. Damage detection results show that the proposed approach is sensitive to the rupture of wire damage in a specific cable and is robust to environmental effects, measurement noise, sensor fault and different traffic patterns. Using the damage sensitive feature in the proposed approach, the metrics such as accuracy, precision, recall and F1 score, which are used to evaluate the performance of damage detection, are 97.97%, 95.08%, 100% and 97.48%, respectively. These results indicate that the proposed approach can reliably detect the damage in stay cables. In addition, the proposed approach is efficient and promising with applications to the field monitoring of cables in cable-stayed bridges.

A simple and efficient data loss recovery technique for SHM applications

  • Thadikemalla, Venkata Sainath Gupta;Gandhi, Abhay S.
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • Recently, compressive sensing based data loss recovery techniques have become popular for Structural Health Monitoring (SHM) applications. These techniques involve an encoding process which is onerous to sensor node because of random sensing matrices used in compressive sensing. In this paper, we are presenting a model where the sampled raw acceleration data is directly transmitted to base station/receiver without performing any type of encoding at transmitter. The received incomplete acceleration data after data losses can be reconstructed faithfully using compressive sensing based reconstruction techniques. An in-depth simulated analysis is presented on how random losses and continuous losses affects the reconstruction of acceleration signals (obtained from a real bridge). Along with performance analysis for different simulated data losses (from 10 to 50%), advantages of performing interleaving before transmission are also presented.

Development of Smart Wireless Measurement System for Monitoring of Bridges (교량 모니터링을 위한 스마트 무선 계측 시스템 개발)

  • Heo, Gwang Hee;Lee, Woo Sang;Lee, Chin Ok;Jeon, Joon Ryong;Sohn, Dong Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.170-178
    • /
    • 2011
  • In this paper, a research was performed to develop a wireless measurement system for bridge monitoring using MEMS sensor and bluetooth wireless communication module. First, in order to prove the suitability of MEMS sensor for the bridge measurement, its ranges of measuring acceleration and of frequency response were experimented. Also, the quality of wireless communication was tested by an experiment on long-distance communication for the knowledge of maximum communication distance, and also by an experiment on the data transmit-receive capability both inside and outside of a steel box bridge. Later, placing the wireless acceleration sensor system that had been developed in our lab on a bridge in public service, we acquired vibration data from the bridge under traffic load and analyzed its dynamic characteristics in realtime. For the analysis of the data, NExT & ERA algorithm were employed. The result of analysis was compared to the FE analysis of the same bridge, and the comparison made it possible to evaluate the performance of wireless acceleration sensor system. As a result, it was proven that the wireless acceleration sensor system developed with the use of MEMS sensor and bluetooth wireless communication module could be effectively applied to the measurement of structure whose vibration feature was low frequency like a bridge.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements

  • Park, Jae-Hyung;Kim, Jeong-Tae;Hong, Dong-Soo;Mascarenas, David;Lynch, Jerome Peter
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.711-730
    • /
    • 2010
  • This study presents the design of autonomous smart sensor nodes for damage monitoring of tendons and girders in prestressed concrete (PSC) bridges. To achieve the objective, the following approaches are implemented. Firstly, acceleration-based and impedance-based smart sensor nodes are designed for global and local structural health monitoring (SHM). Secondly, global and local SHM methods which are suitable for damage monitoring of tendons and girders in PSC bridges are selected to alarm damage occurrence, to locate damage and to estimate severity of damage. Thirdly, an autonomous SHM scheme is designed for PSC bridges by implementing the selected SHM methods. Operation logics of the SHM methods are programmed based on the concept of the decentralized sensor network. Finally, the performance of the proposed system is experimentally evaluated for a lab-scaled PSC girder model for which a set of damage scenarios are experimentally monitored by the developed smart sensor nodes.

Temperature distribution behaviors of GFRP honeycomb hollow section sandwich panels

  • Kong, B.;Cai, C.S.;Pan, F.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.623-641
    • /
    • 2013
  • The fiber-reinforced polymer (FRP) composite panel, with the benefits of light weight, high strength, good corrosion resistance, and long-term durability, has been considered as one of the prosperous alternatives for structural retrofits and replacements. Although with these advantages, a further application of FRPs in bridge engineering may be restricted, and that is partly due to some unsatisfied thermal performance observed in recent studies. In this regard, Kansas Department of Transportation (DOT) conducted a field monitoring program on a bridge with glass FRP (GFRP) honeycomb hollow section sandwich panels. The temperatures of the panel surfaces and ambient air were measured from December 2002 to July 2004. In this paper, the temperature distributing behaviors of the panels are firstly demonstrated and discussed based on the field measurements. Then, a numerical modeling procedure of temperature fields is developed and verified. This model is capable of predicting the temperature distributions with the local environmental conditions and material's thermal properties. Finally, a parametric study is employed to examine the sensitivities of several temperature influencing factors, including the hollow section configurations, environmental conditions, and material properties.

Analysis of Behavior due to Tendon Damage for Maintenance of PSC I Girder Bridge (PSC I 거더교 유지관리를 위한 긴장재 손상에 따른 거동 분석)

  • Jongho Park;Jinwoong Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.53-60
    • /
    • 2024
  • Prestressed concrete (PSC) bridges are vulnerable to corrosion and fracture of tendons, and in particular, structures using the internal post-tensioned with grouted system have difficulties in maintenance due to limitations of inspection. In this study, the actual behavior of PSC I girder bridge was analyzed according to tendon damage. The target PSC I girder bridge, an decommissioned highway bridge of upper and lower bridges, had the service period of 33 years and 20 years, respectively. Deflection and concrete strain were measured according to the location of damaged tendon and loading method. Regardless of the age of the bridge, its structural performance decreased when the damaged tendon was closer to the center of the girder. The change in behavior increased as the truck load approached to the girder where the tendon cut. If the load was applied to the adjacent girder where the tendon was cut, the structural performance was likely to be maintained due to the influence of the entire structural system. The change in deflection was difficult to observe visually, while the concrete strain exceeded the cracking strain. Therefore, it is recommended that future monitoring and inspection of PSC I girder bridges should focus on concrete strain or cracking.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

Evaluation of Short and Long-Term Modal Parameters of a Cable-Stayed Bridge Based on Operational Modal Analysis (운용모드해석에 기반한 사장교의 장단기 동특성 평가)

  • Park, Jong-Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.20-29
    • /
    • 2022
  • The operational modal analysis (OMA) technique, which extracts the modal parameters of a structural system using ambient vibrations, has been actively developed as a field of structural health monitoring of cable-supported bridges. In this paper, the short and long-term modal parameters of a cable-stayed bridge were evaluated using the acceleration data obtained from the two ambient vibration tests (AVTs) and three years of continuous measurements. A total of 27 vertical modes and 1 lateral mode in the range 0.1 ~ 2.5 Hz were extracted from the high-resolution AVTs which were conducted in the 6th and 19th years after its completion. Existing OMA methods such as Peak-Picking (PP), Eigensystem Realization Algorithm with Data Correlation (ERADC), Frequency Domain Decomposition (FDD) and Time Domain Decomposition (TDD) were applied for modal parameters extraction, and it was confirmed that there was no significant difference between the applied methods. From the correlation analysis between long-term natural frequencies and environmental factors, it was confirmed that temperature change is the dominant factor influencing natural frequency fluctuations. It was revealed that the decreased natural frequencies of the bridge were not due to changes in structural performance and integrity, but to the environmental effects caused by the temperature difference between the two AVTs. In addition, when the TDD technique is applied, the accuracy of extracted mode shapes is improved by adding a proposed algorithm that normalizes the sequence so that the autocorrelations at zero lag equal 1.

A Study on the Optimization and Bridge Seismic Response Test of CAFB Using El-centro Seismic Waveforms (El-centro 지진파형을 이용한 CAFB의 최적화 및 교량 지진응답실험에 관한 연구)

  • Heo, Gwang Hee;Lee, Chin Ok;Seo, Sang Gu;Park, Jin Yong;Jeon, Joon Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.67-76
    • /
    • 2020
  • This study aims to optimize the cochlea-inspired artificial filter bank (CAFB) using El-Centro seismic waveforms and test its performance through a shaking table test on a two-span bridge model. In the process of optimizing the CAFB, El-Centro seismic waveforms were used for the purpose of evaluating how they would affect the optimizing process. Next, the optimized CAFB was embedded in the developed wireless-based intelligent data acquisition (IDAQ) system to enable response measurement in real-time. For its performance evaluation to obtain a seismic response in real-time using the optimized CAFB, a two-span bridge (model structures) was installed in a large shaking table, and a seismic response experiment was carried out on it with El-Centro seismic waveforms. The CAFB optimized in this experiment was able to obtain the seismic response in real-time by compressing it using the embedded wireless-based IDAQ system while the obtained compressed signals were compared with the original signal (un-compressed signal). The results of the experiment showed that the compressed signals were superior to the raw signal in response performance, as well as in data compression effect. They also proved that the CAFB was able to compress response signals effectively in real-time even under seismic conditions. Therefore, this paper established that the CAFB optimized by being embedded in the wireless-based IDAQ system was an economical and efficient data compression sensing technology for measuring and monitoring the seismic response in real-time from structures based on the wireless sensor networks (WSNs).