• Title/Summary/Keyword: Structural Element

검색결과 7,490건 처리시간 0.032초

Structural analysis and design using generative AI

  • Moonsu Park;Gyeongeun Bong;Jungro Kim;Gihwan Kim
    • Structural Engineering and Mechanics
    • /
    • 제91권4호
    • /
    • pp.393-401
    • /
    • 2024
  • This study explores the integration of the generative AI, specifically ChatGPT (GPT-4o), into the field of structural analysis and design using the finite element method (FEM). The research is conducted in two main parts: structural analysis and structural design. For structural analysis, two scenarios are examined: one where the FEM source code is provided to ChatGPT and one where it is not. The AI's ability to understand, process, and accurately perform finite element analysis in both scenarios is evaluated. Additionally, the application of ChatGPT in structural design is investigated, including design modifications and parameter sensitivity analysis. The results demonstrate the potential of the generative AI to assist in complex engineering tasks, suggesting a future where AI significantly enhances efficiency and innovation in structural engineering. However, the study also highlights the importance of ensuring the accuracy and reliability of AI-generated results, particularly in safety-critical applications.

절점 병합에 의한 삼각형 평판휨 요소 (Triangular Plate-Bending Element by Combined node)

  • 최창근;강윤숙;이태열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.104-111
    • /
    • 2002
  • A new triangular element fur the finite element analysis of plate-bending problems is presented. For the purpose of sharing the program code of 4 node plate-bending element, two nodes of the 4-node element are combined to form a triangular element. Thus, the presented element would bring about great deal of efficiency of the computer program. The proposed variable-node elements pass the patch tests, do not show spurious zero-energy modes, and do not produce shear locking phenomena. It is also shown that the elements produce reliable solutions through numerical tests for standard benchmark problems.

  • PDF

수정된 적분차수를 이용한 평면유한요소의 개선 (An Improved Quadratic Finite Element with Modified Integration Order)

  • 김선훈;김주일;이창원;신재철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.42-49
    • /
    • 2001
  • In this paper the efficient finite element for stress analysis of plane stress/strain problems is proposed. This element is achieved by adding the bubble-mode function to 8-node element. The stiffness matrix of the element is calculated by using modified numerical integration order to avoid spurious zero energy mode. In order to demonstrate the performance of this element numerical tests for various verification problems are carried out. The results of numerical tests show accuracy and reliability of the element presented in this paper.

  • PDF

New generation software of structural analysis and design optimization--JIFEX

  • Gu, Yuanxian;Zhang, Hongwu;Guan, Zhenqun;Kang, Zhan;Li, Yunpeng;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • 제7권6호
    • /
    • pp.589-599
    • /
    • 1999
  • This paper presents the development and applications of the software package JIFEX, a new finite element system which can be used for structural analysis and optimum design by the modern computer hardware and software technologies such as MS Windows95/NT and Pentium PC platforms. The complete system of JIFEX is programmed with $C/C^{++}$ language to make full use of advanced facilities of MS Windows95/NT. In the system, the finite element data pre-processing, based on the most popular CAD package AutoCAD (R13, R14), has been implemented, so that the finite element modeling could be integrated with geometric modeling of CAD. The system not only has interactive graphics facility for data post-processing, but also realizes the real-time computing visualization by means of the Dynamic Data Exchange (DDE) technique. Running on the Pentium computers, JIFEX can solve large-scale finite element analysis problems such as the ones with more than 60000 nodes in the finite element model.

회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석 (Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects)

  • 김동만;김동현;박강균;김유성
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao;Yupeng, Wang
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.207-216
    • /
    • 2023
  • Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

Non-stochastic interval factor method-based FEA for structural stress responses with uncertainty

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.703-708
    • /
    • 2017
  • The goal of this study is to evaluate behavior uncertainties of structures by using interval finite element analysis based on interval factor method as a specific non-stochastic tool. The interval finite element method, i.e., interval FEM, is a finite element method that uses interval parameters in situations where it is not possible to get reliable probabilistic characteristics of the structure. The present method solves the uncertainty problems of a 2D solid structure, in which structural characteristics are assumed to be represented as interval parameters. An interval analysis method using interval factors is applied to obtain the solution. Numerical applications verify the intuitive effectiveness of the present method to investigate structural uncertainties such as displacement and stress without the application of probability theory.

Non-stochastic uncertainty response assessment method of beam and laminated plate using interval finite element analysis

  • Doan, Quoc Hoan;Luu, Anh Tuan;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.311-318
    • /
    • 2020
  • The goal of this study is to analytically and non-stochastically generate structural uncertainty behaviors of isotropic beams and laminated composite plates under plane stress conditions by using an interval finite element method. Uncertainty parameters of structural properties considering resistance and load effect are formulated by interval arithmetic and then linked to the finite element method. Under plane stress state, the isotropic cantilever beam is modeled and the laminated composite plate is cross-ply lay-up [0/90]. Triangular shape with a clamped-free boundary condition is given as geometry. Through uncertainties of both Young's modulus for resistance and applied forces for load effect, the change of structural maximum deflection and maximum von-Mises stress are analyzed. Numerical applications verify the effective generation of structural behavior uncertainties through the non-stochastic approach using interval arithmetic and immediately the feasibility of the present method.

Finite Element Modeling of Piezoelectric Sensors and Actuators based on Timoshenko Beam Theory

  • 최창근;송명관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.3-10
    • /
    • 2000
  • In this study, a new smart beam finite element is proposed for the finite element modeling of the beam-type smart structure with bonded plate-type piezoelectric sensors and actuators. Constitutive equations far the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered. By using the variational principle, the equations of motion for the smart beam finite element are derived. The presented 2-node beam finite element is isoparametric element based on Timoshenko beam theory. The validity of the proposed beam element is shown through comparing the analysis results of the verification examples with those of other previous researches. Therefore, by analyzing smart structures with smart beam finite elements, it is possible to simulate the control of the structural behavior by piezoelectric actuators with applied voltages and the monitoring of the structure behavior by piezoelectric sensors with sensed voltages.

  • PDF