Acknowledgement
We extend our heartfelt gratitude to Prof. Phill-Seung Lee of the Korea Advanced Institute of Science and Technology (KAIST) for providing valuable insights that greatly contributed to this research.
References
- Bathe, K.J. (2006), Finite Element Procedures, Prentice Hall, New York.
- Beck, A., Flad, D. and Munz, C.D. (2019), "Deep neural networks for data-driven LES closure models", J. Comput. Phys., 398, 108910. https://doi.org/10.1016/j.jcp.2019.108910.
- Choi, H.G. and Lee, P.S. (2023), "Towards improving the 2DMITC4 element for analysis of plane stress and strain problems", Comput. Struct., 275, 106933. https://doi.org/10.1016/j.compstruc.2022.106933.
- Guo, X., Li, W. and Iorio, F. (2016), "Convolutional neural networks for steady flow approximation", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, August.
- Hughes, T.J.R. (2012), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, Mineola, New York.
- Jung, H., Lee, C. and Lee, P.S. (2023), "Strain-smoothed polygonal finite elements", Struct. Eng. Mech., 86(3), 311-324. https://doi.org/10.12989/sem.2023.86.3.311.
- Jung, J., Jun, H. and Lee, P.S. (2022), "Self-updated four-node finite element using deep learning", Comput. Mech., 69(1), 23-44. https://doi.org/10.1007/s00466-021-02081-7.
- Jung, J., Yoon, K. and Lee, P.S. (2020), "Deep learned finite elements", Comput. Meth. Appl. Mech. Eng., 372, 113401. https://doi.org/10.1016/j.cma.2020.113401.
- Kim, S. and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43. https://doi.org/10.1016/j.compstruc.2018.03.001.
- Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell element and its performance", Comput. Struct., 169, 57-68. https://doi.org/10.1016/j.compstruc.2016.03.002.
- Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P. and Hoyer, S. (2021), "Machine learning methods for data-driven turbulence modeling", Proceedings of the National Academy of Sciences, USA.
- Lee, C. and Lee, P.S. (2018), "A new strain smoothing method for triangular and tetrahedral finite elements", Comput. Meth. Appl. Mech. Eng., 341, 939-955. https://doi.org/10.1016/j.cma.2018.07.022.
- Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.
- Ling, J., Kurzawski, A. and Templeton, J. (2016), "Reynolds averaged turbulence modelling using deep neural networks with embedded invariance", J. Fluid Mech., 807, 155-166. https://doi.org/10.1017/jfm.2016.615.
- Raissi, M. (2018), "Deep hidden physics models: Deep learning of nonlinear partial differential equations", J. Mach. Learn Res., 19(25), 1-24.
- Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019), "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations", J. Comput. Phys., 378, 686-707. https://doi.org/10.1016/j.jcp.2018.10.045.
- Sirignano, J. and Spiliopoulos, K. (2018), "DGM: A deep learning algorithm for solving partial differential equations", J. Comput. Phys., 375, 1339-1364. https://doi.org/10.1016/j.jcp.2018.08.029.
- Tompson, J., Schlachter, K., Sprechmann, P. and Perlin, K. (2017), "Accelerating eulerian fluid simulation with convolutional networks", Proceedings of the 34th 741 International Conference on Machine Learning, Sydney, Australia, July.
- Zhang, Z.J. and Duraisamy, K. (2015), "Machine learning methods for data-driven turbulence modeling", In Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX, USA, June.
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method: Solid Mechanics, Vol. 2, Butterworth-Heinemann.