• Title/Summary/Keyword: Structural Efficiency

Search Result 2,612, Processing Time 0.032 seconds

Structural damage identification using cloud model based fruit fly optimization algorithm

  • Zheng, Tongyi;Liu, Jike;Luo, Weili;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.245-254
    • /
    • 2018
  • In this paper, a Cloud Model based Fruit Fly Optimization Algorithm (CMFOA) is presented for structural damage identification, which is a global optimization algorithm inspired by the foraging behavior of fruit fly swarm. It is assumed that damage only leads to the decrease in elementary stiffness. The differences on time-domain structural acceleration data are used to construct the objective function, which transforms the damaged identification problem of a structure into an optimization problem. The effectiveness, efficiency and accuracy of the CMFOA are demonstrated by two different numerical simulation structures, including a simply supported beam and a cantilevered plate. Numerical results show that the CMFOA has a better capacity for structural damage identification than the basic Fruit Fly Optimization Algorithm (FOA) and the CMFOA is not sensitive to measurement noise.

Structural lightweight concrete containing expanded poly-styrene beads; Engineering properties

  • Vakhshouri, Behnam
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.581-597
    • /
    • 2020
  • Light-Weight Concrete containing Expanded Poly-Styrene Beads (EPS-LWC) is an approved structural and non-structural material characterized by a considerably lower density and higher structural efficiency, compared to concrete containing ordinary aggregates. The experimental campaign carried out in this project provides new information on the mechanical properties of structural EPS-LWC, with reference to the strength and tension (by splitting and in bending), the modulus of elasticity, the stress-strain curve in unconfined compression, the absorbed energy under compression and reinforcement-concrete bond. The properties measured at seven ages since casting, from 3 days to 91 days, in order to investigate their in-time evolution. Mathematical relationships are formulated as well, between the previous properties and time, since casting. The dependence of the compressive strength on the other mechanical properties of EPS-LWC is also described through an empirical relationship, which is shown to fit satisfactorily the experimental results.

구조 형태에 따른 1차원 보와 2차원 평판 구조 해석 비교

  • Gang, Yu-Jin;Sim, Ji-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.274-278
    • /
    • 2015
  • There are different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their assigned mission. One of the fundamental analyses during the design of the aircraft is the structural analysis. The structural analysis becomes more complicated and needs more computations because of the on-going complex aircrafts' structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, i.e., an equivalent beam or plate analysis for an aircraft wing. It is necessary to assess the boundary between the one-dimensional beam analysis and the two-dimensional plate theory for an accurate structural analysis. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimesional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and analytic solution.

  • PDF

Spliced Two Span Bridge with the U-Type Precast Girders by Using the Secondary Moment (2차 모멘트를 이용한 U형 프리캐스트 거더의 연속화)

  • 이환우;조은래;김광양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.193-200
    • /
    • 1998
  • The precast prestressed concrete girders of I-type section are frequently employed to design the short-to-medium span bridge. However, its beam depth is greatly increased as its span length is increased over than about 30m. Therefore, the economic and aesthetic effectiveness are rapidly decreased in case of the span length over 30m. The purpose of this paper is to verify the structural safety on the new spliced two span bridge and analyze the variation of member forces and stress distribution according to the construction stages and time. The new spliced technique is performed by partial post tensioning and release in the U-type girders. The structural characteristics of this technique is the introduction of secondary moment to reduce the bending moment by self weight of precast U-type girders constructed in simply supported beam type. So, it is expected that the structural efficiency of this spliced bridge may be improved more than other techniques.

  • PDF

Diagnosis and recovering on spatially distributed acceleration using consensus data fusion

  • Lu, Wei;Teng, Jun;Zhu, Yanhuang
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.271-290
    • /
    • 2013
  • The acceleration information is significant for the structural health monitoring, which is the basic measurement to identify structural dynamic characteristics and structural vibration. The efficiency of the accelerometer is subsequently important for the structural health monitoring. In this paper, the distance measure matrix and the support level matrix are constructed firstly and the synthesized support level and the fusion method are given subsequently. Furthermore, the synthesized support level can be served as the determination for diagnosis on accelerometers, while the consensus data fusion method can be used to recover the acceleration information in frequency domain. The acceleration acquisition measurements from the accelerometers located on the real structure National Aquatics Center are used to be the basic simulation data here. By calculating two groups of accelerometers, the validation and stability of diagnosis and recovering on acceleration based on the data fusion are proofed in the paper.

Optimal Latinized partially stratified sampling for structural reliability analysis

  • Majid Ilchi Ghazaan;Amirreza Davoodi Yekta
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.111-120
    • /
    • 2024
  • Sampling methods are powerful approaches to solving the problems of structural reliability analysis and estimating the failure probability of structures. In this paper, a new sampling method is proposed offering lower variance and lower computational cost for complex and high-dimensional problems. The method is called Optimal Latinized partially stratified sampling (OLPSS) as it is based upon the Latinized Partially Stratified Sampling (LPSS) which itself is based on merging Stratified Sampling (SS) and Latin Hypercube Sampling (LHS) algorithms. While LPSS has a low variance, it may suffer from a lack of good space-filling of its generated samples in some cases. In the OLPSS, this issue has been resolved by employing a new columnwise-pairwise exchange optimization procedure for sample generation. The efficiency of the OLPSS has been tested and reported under several benchmark mathematical functions and structural examples including structures with a large number of variables (e.g., a structure with 67 variables). The proposed method provides highly accurate estimates of the failure probability of structures with a significantly lower variance relative to the Monte Carlo simulations, Latin Hypercube, and standard LPSS.

An Analysis on the Determinants of Efficiency of the Pharmaceutical Firms using Stochastic Frontier Analysis (Stochastic Frontier Analysis를 이용한 제약회사의 효율성과 그 결정요인분석)

  • Sakong, Jin;Kim, Jeongkyu
    • Health Policy and Management
    • /
    • v.25 no.2
    • /
    • pp.97-106
    • /
    • 2015
  • Background & Methods: The purpose of this research is to estimate the efficiency of the pharmaceutical firms and the determinants of their efficiency. Stochastic frontier analysis(SFA) and panel study are applied to the data of 60 domestic pharmaceutical firms from 2006 to 2012. Results & Conclusion: First, the result of the stochastic frontier analysis shows that overall efficiency of the pharmaceutical firms is increasing as time goes by. However, if firms are classified by the scale, the larger firms show more efficiency and if classified by the degree of innovativeness, the innovative firms show more efficiency compared to the non-innovative firms. This evidences show that the scale and R&D investment have significant relationships with the efficiency of the pharmaceutical firms. Therefore, it is necessary to increase the national level of investment for the fundamental researches to vitalize R&D of the new drugs. Second, the result of estimation of the determinants of efficiency shows that the firms with larger sales promotion expenses and entertainment expenses have less efficiency compared to the other firms. This can be explained by the structural characteristics of the small generic pharmaceutical firms. Therefore, the government had better make the pharmaceutical firms to reduce sales promotion and entertainment expenses and increase R&D expenses by introducing systems such as global budgeting system on medicine or reference pricing system.

Load Transfer Mechanism of a Hybrid Beam-Column Connection System with Structural Tees

  • Kim, Sang-Sik;Choi, Kwang-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.199-205
    • /
    • 2006
  • The composite frame system with reinforced concrete column and steel beam can be improved in its structural efficiency by complementing the shortcomings of the two systems. The system, however, has many inherent problems in practical design and construction process due to the dissimilarities of the materials. Considering these circumstance, this research aims for the development of a composite structural system which connects the steel beams to the R/C columns with higher structural safety and economy. Basically, the proposed connection system is composed of four split tees, structural angles reinforced by a stiffener, high strength steel rods, connecting plates and shear plates. Structural tests have been carried out to investigate the moment transfer mechanism 1Tom the beam flange to steel rods or connecting plates through the structural angle reinforced by a stiffener. The four prototype specimens have been tested until the flange of the beam reached a plastic state. The test results indicated that no distinct material dissimilarities between concrete and steel have been detected for the proposed hybrid beam-column connection system and that the stress transfer through the structural angle between the beam flange and steel rods or connecting plates was very encouraging.

Optimization of Reinforced Concrete Piers Based on Efficient Reanalysis Technique (효율적인 재해석 기법에 의한 철근콘크리트 교각의 최적설계)

  • 조효남;민대홍;신만규
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.505-513
    • /
    • 2001
  • In this study, an optimum design algorithm using efficient reanalysis is proposed for seismic design of Reinforced Concrete (RC) piers. The proposed algorithm for optimization of RC piers is based on efficient reanalysis technique. Considering structural behavior of RC piers, the other approximation technique such as artificial constraint deletion is introduced to increase the efficiency of optimization. The efficiency and robustness of the proposed algorithm including the proposed reanalysis technique is demonstrated by comparing it with a conventional optimization algorithm. A few of design examples are optimized to show the applicability of the proposed algorithm.

  • PDF

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.