• 제목/요약/키워드: Strong Shock

검색결과 244건 처리시간 0.025초

Diffusion of Cosmic Rays in a Multiphase Interstellar Medium Shocked by a Supernova Remnant Blast Wave

  • Roh, Soonyoung;Inutsuka, Shu-ichiro;Inoue, Tsuyoshi
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.38.1-38.1
    • /
    • 2015
  • Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations of gamma rays from the vicinity of SNRs have shown strong evidence that Galactic CR protons are accelerated by the shock waves of the SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyze the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the CRs diffusion at a length scale of order a few pc, and show the Richtmeyer-Meshkov instability can provide enough turbulence downstream of the shock to make the diffusion coefficient close to the Bohm level for energy larger than 30 TeV for a realistic interstellar medium.

  • PDF

일체형 로켓 램제트의 비정상 반응유동장 해석 (Analysis on the Unsteady Reacting Flow-field in Integrated Rocket Ramjet)

  • 고현;박병훈;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1494-1498
    • /
    • 2004
  • Transition sequence of rocket to ramjet was simulated numerically for a two-dimensional axisymmetric can-type ramjet engine. Multi-species preconditioned Navier-Stokes equations with $k-{\varepsilon}$ turbulence model and finite-rate chemistry model was employed. To calculate transition sequence, initial flow-field conditions for inlet diffuser with closed port-cover was computed first, and then that result was applied as initial conditions after port-cover opened. Terminal shock was developed as a result of increased pressure in a combustor due to combustion and ramjet operated at supercritical condition. For a smaller nozzle throat area, buzz instability was occurred. Strong pressure oscillations were observed as a result of forward and backward movement of terminal shock and those oscillations were not damped out.

  • PDF

전산공력음향학을 위한 적응형 비선형 인공감쇄모형 (Adaptive Nonlinear Artificial Dissipation Model for Computational Aeroacoustics)

  • 김재욱;이덕주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.11-19
    • /
    • 2001
  • An adaptive nonlinear artificial dissipation model is presented for performing aeroacoustic computations by the high-order and high-resolution numerical schemes based on the central finite differences. An effective formalism of it is devised by combining a selective background smoothing term and a well-established nonlinear shock-capturing term which is for the temporal accuracy as well as the numerical stability. A conservative form of the selective background smoothing term is presented to keep accurate phase speeds of the propagating nonlinear waves. The nonlinear shock-capturing term that has been modeled by the second-order derivative term is combined with it to improve the resolution of discontinuities and stabilize the strong nonlinear waves. It is shown that the improved artificial dissipation model with an adaptive control constant which is independent of problem types reproduces the correct profiles and speeds of nonlinear waves, suppresses numerical oscillations near discontinuity and avoids unnecessary damping on the smooth linear acoustic waves. The feasibility and performance of the adaptive nonlinear artificial dissipation model are investigated by the applications to actual computational aeroacoustics problems.

  • PDF

환형 유동을 수반하는 초음속 스월 제트 유동의 가시화 (Visualization of the Supersonic Swirl Jet with Annular Stream)

  • 김중배;이권희;;김희동
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.91-94
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic swilling jets are emitted from a sonic inner nozzle and the outer annular nozzle produces the co/counter swirling streams against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pilot impact and static pressure measurements, and visualized by using the Schlieren optical method. The experiment has been performed fur different swirl intensities and pressure ratios. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets, and the effect of the secondary counter-swirling jet on the primary inner jet is similar to the secondary co-swirl jet case.

  • PDF

Investigation on the Flow Field Characteristics of a Highly Underexpanded Pulsed Plasma Jet

  • Kim, Jong-Uk;Kim, Youn J.
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1691-1698
    • /
    • 2001
  • In recent years, significant progress has been made in modeling turbulence behavior in plasma and its effect on transport. It has also been made in diagnostics for turbulence measurement; however, there is still a large gap between theoretical model and experimental measurements. Visualization of turbulence can improve the connection to theory and validation of the theoretical model. One method to visualize the flow structures in plasma is a laser Schlieren imaging technique. We have recently applied this technique and investigated the characteristics of a highly underexpanded pulsed plasma jet originating from an electrothermal capillary source. Measurements include temporally resolved laser Schlieren imaging of a precursor blast wave. Analysis on the trajectory of the precursor blast wave shows that it does not follow the scaling expected for a strong shock resulting from the instantaneous deposition of energy at a point. However, the shock velocity does scale as the square root of the deposited energy, in accordance with the point deposition approximation.

  • PDF

EXTENSION OF AUSMPW+ SCHEME FOR TWO-FLUID MODEL

  • Park, Jin Seok;Kim, Chongam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권3호
    • /
    • pp.209-219
    • /
    • 2013
  • The present paper deals with the extension of AUSMPW+ scheme into two-fluid model for multiphase flow. AUSMPW+ scheme is the improvement of a single-phase AUSM+ scheme by designing pressure-based weighting functions to prevent oscillations near a wall and shock instability after a strong shock. Recently, Kitamura and Liou assessed a family of AUSM-type schemes with two-fluid model governing equations [K. Kitamura and M.-S. Liou, Comparative study of AUSM-Family schemes in compressible multi-phase flow simulations, ICCFD7-3702 (2012)]. It was observed that the direct application of the single-phase AUSMPW+ did not provide satisfactory results for most of numerical test cases, which motivates the current study. It turns out that, by designing pressure-based weighting functions, which play a key role in controlling numerical diffusion for two-fluid model, problems reported in can be overcome. Various numerical experiments validate the proposed modification of AUSMPW+ scheme is accurate and robust to solve multiphase flow within the framework of two-fluid model.

펄스 방전에 의한 시추공 확공 현상에 대한 수치해석 (Numerical Simulation of Borehole Expansion By Pulse Discharge)

  • 박현구;이승래;김태훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1346-1353
    • /
    • 2009
  • In this study, a numerical study was carried out to simulate the expansion of ground borehole by pulse discharge technology using finite element analysis. Considering the mortar in the borehole as an acoustic medium and the surrounding soil as an elasto-plastic material, the strong shock wave developed by the pulse discharge was modeled using the underwater explosion model. The ground expansion was simulated based on a coupled acoustic-structural analysis with varying properties of mortar and soil, and the behavior between acoustic-structural interface.

  • PDF

A BIPOLAR PLANETARY NEBULA NGC 6537: PHOTOIONIZATION OR SHOCK HEATING?

  • HYUNG SIEK
    • 천문학회지
    • /
    • 제32권1호
    • /
    • pp.55-63
    • /
    • 1999
  • NGC 6537 is an extremely high excitation bipolar planetary nebula. It exhibits a huge range of excitation from lines of [N I] to [Si VI]or [Fe VII], i.e. from neutral atoms to atoms requiring an ionization potential of $\~$167eV. Its kinematical structures are of special interest. We are here primarily concerned with its high resolution spectrum as revealed by the Hamilton Echelle Spectrograph at Lick Observatory (resolution $\~0.2{\AA}$) and supplemented by UV and near-UV data. Photoionization model reproduces the observed global spectrum of NGC 6537, the absolute H$\beta$ flux, and the observed visual or blue magnitude fairly well. The nebulosity of NGC 6537 is likely to be the result of photo-ionization by a very hot star of $T_{eff} \~ 180,000 K$, although the global nebular morphology and kinematics suggest an effect by strong stellar winds and resulting shock heating. NGC 6537 can be classified as a Peimbert Type I planetary nebula. It is extremely young and it may have originated from a star of about 5 $M_{\bigodot}$.

  • PDF

Numerical investigation of potential mitigation measures for poundings of seismically isolated buildings

  • Polycarpou, Panayiotis C.;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.1-24
    • /
    • 2011
  • During very strong earthquakes, seismically isolated buildings may experience large horizontal relative displacements, which may lead to poundings if an insufficiently wide clearance is provided around the building. This paper investigates, through numerical simulations, the effectiveness of using rubber bumpers, which could be attached at locations where it is likely to have impacts, in order to act as shock-absorbers. For the simulation of the dynamic behavior of such rubber bumpers during impacts, a nonlinear force-based impact model, which takes into account the finite thickness of the rubber bumpers, has been developed. Subsequently, a series of parametric analyses are performed to assess the effect of the gap size, the earthquake characteristics and the thickness, compressive capacity and damping of the bumpers. The stiffness of the moat wall is also parametrically considered during poundings of a seismically isolated building, as another potential mitigation measure for poundings of seismically isolated buildings.

Dynamic Relationship between Stock Prices and Exchange Rates: Evidence from Nepal

  • Kim, Do-Hyun;Subedi, Shyam;Chung, Sang-Kuck
    • 국제지역연구
    • /
    • 제20권3호
    • /
    • pp.123-144
    • /
    • 2016
  • This paper investigates the linkages between returns both in foreign exchange and stock markets, and uncertainties in two markets using daily data for the period of 16 July 2004 to 30 June 2014 in Nepalese economy. Four hypotheses are tested about how uncertainty influences the stock index and exchange rates. From the empirical results, a bivariate EGARCH-M model is the best to explain the volatility in the two markets. There is a negative relationship from the exchange rates return to stock price return. Empirical results do provide strong empirical confirmation that negative effect of stock index uncertainty and positive effect of exchange rates uncertainty on average stock index. GARCH-in-mean variables in AR modeling are significant and shows that there is positive effect of exchange rates uncertainty and negative effect of stock index uncertainty on average exchange rates. Stock index shocks have longer lived effects on uncertainty in the stock market than exchange rates shock have on uncertainly in the foreign exchange market. The effect of the last period's shock, volatility is more sensitive to its own lagged values.