• Title/Summary/Keyword: Stripping Voltammetry

Search Result 130, Processing Time 0.027 seconds

Anodic Stripping Voltammetric Determination of Iodide Ion with a Cinchonine-Copper(Ⅱ) Complex Modified Carbon Paste Electrode (Cinchonine-Copper(Ⅱ) 착물로 변성된 탄소반죽전극을 이용한 요오드 이온의 양극벗김전압전류법 정량)

  • Kwak, Myung Keun;Park, Deog Soo;Jeong, Euh Duck;Won, Mi Sook;Shim, Yoon Bo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.341-346
    • /
    • 1996
  • Electrochemical determination of iodide was carried out by stripping voltammetry with a $(Cin)Cu(NO_3)_2$ modified-carbon paste electrode. Iodide was coordinated onto the electrode surface containing $(Cin)Cu(NO_3)_2$ via ion exchange. The oxidation peak potential of incorporated iodide was +0.72 V. The optimum analytical conditions for the determination of iodide were investigated using linear sweep voltammetry. Optimum conditions for the electrochemical determination of iodide were as follows: i) A predeposition solution was 0.1 M $KNO_3.$ ii) The deposition time was 10 min. iii) The composition of the electrode was 40% (w/w). The detection limit for iodide was $1.0{\times}10^{-6}M$ and the relative standard deviation was ${\pm}5.5%\;in\;2.0{\times}10^{-5}M$(four repetitions). The interference effect of other anions were also investigated. $Cl^-,\;Br^-,\;C_2O_4^{2-},\;and\;ClO_4^-$ ions do not interfere for the determination of iodide. When $SCN^-$ was added to the deposition solution, the oxidation peak current of iodide ion was decreased roughly 32%.

  • PDF

A Novel Sensor Based on Electropolymerization Poly(safranine) Film Electrode for Voltammetric Determination of 4-Nitrophenol

  • Liu, Xing-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1182-1186
    • /
    • 2010
  • A novel poly(safranine)-modified electrode has been constructed for the determination of 4-nitrophenol (4-NP) in natural water sample. The electrochemical behavior of poly(safranine) film electrode and its electrocatalytic activity toward 4-NP were studied in detail by cyclic voltammetry (CV) and adsorptive linear stripping voltammetry (LSV). All experimental parameters were optimized and LSV was proposed for its determination. In optimal working conditions, the reduction current of 4-NP at this poly(safranine)-modified electrode exhibited a good linear relationship with 4-NP concentration in the range of $8.0{\times}10^{-8}$ to $4.0{\times}10^{-5}mol\;L^{-1}$. The detection limit was $3.0{\times}10^{-8}mol\;L^{-1}$. The high sensitivity and selectivity of the sensor were demonstrated by its practical application for the determination of trace amounts of 4-NP in natural water and fruit samples.

Assay of In Vivo Chromium with a Hollow-fiber Dialysis Sensor

  • Ly, Suw-Young;Yoo, Hai-Soo;Jung, Min-Ki;Ko, Kwang-Hee;Kim, Byung-Jin;Lee, Ki-Chul;Choi, Byung-Min
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.233-236
    • /
    • 2010
  • The analytical in vivo chromium ion was searched for using a voltammetric hollow-fiber dialysis sensor via square wave stripping voltammetry (SW), cyclic voltammetry (CV), and chronoamperometry. Under optimum parameters, the analytical results indicated linear working ranges of 50~400 mg/l CV and $10{\sim}80\;{\mu}g/l$ SW within a 30-sec accumulation time. The analytical detection limit (S/N) was $6.0\;{\mu}g/l$. The developed method can be applied to in vivo tissues and in ex vivo toxicity assay, as well as to other materials that require chromium analysis.

Electrochemical Detection of Trace Level Copper in in vivo Cell (생체 세포내 미량 구리의 전기화학적 검출에 관한 연구)

  • Lee, Chang-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1333-1338
    • /
    • 2012
  • In order to measure the minute amount of Cu(II) in our environment, cyclic voltammetry (CV) and square-wave stripping voltammetry (SWSV) were performed for a trace copper assay using bismuth immobilized on a carbon nanotube paste electrode. An analytical working range of 30 to $240{\mu}g/L$ Cu(II) was obtained for CV and SWSV. The SWSV precision obtained was 0.47 % (n = 15) RSD in $30.0{\mu}g/L$ Cu(II). The detection limit obtained was 3.1 ng/L Cu(II) using SWSV, while the CV yielded the nano-range detection limit through the pre-concentration step. By using this research method, Cu(II) value could be determined in the urine of human sample and in the brain of fish sample. This research can be effectively applied to other cases of measuring minute amount of Cu(II) in living organisms.

Diagnosis of Trace Toxic Uranium Ions in Organic Liver Cell

  • Ly, Suw Young;Pack, Eun Chul;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.117-120
    • /
    • 2014
  • Uranium is toxic and radioactive traces of it can be found in natural water and soils. High concentrations of it in biological systems cause genetic disorders and diseases. For the in vivo diagnosis, micro and nano range detection limits are required. Here, an electrochemical assay for trace toxic uranium was searched using stripping voltammetry. Renewable and simplified graphite pencils electrode (PE) was used in a three-electrode cell system. Seawater was used instead of an electrolyte solution. This setup can yield good results and the detection limit was attained to be at $10{\mu}gL^{-1}$. The developed skill can be applied to organic liver cell.

Trace Measurement of Ruthenium by Adsorptive Stripping Voltammetry (벗김 전압전류법에 의한 루테늄의 미량 측정)

  • Czae, Myung Zoon;Kwon, Young Soon;Kim, So Jin
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.5
    • /
    • pp.246-250
    • /
    • 1997
  • In the presence of optimum amounts of hydroxylamine, trace ruthenium(III) can be conveniently determined in acidic (boric) media by coupling catalytic hydrogen processes with adsorptive accumulation of the catalyst, using differential pulse voltammetry. Cyclic voltammetry was used to characterize the redox and interfacial processes. Optimal experimental conditions were found to be a stirred borate (0.015 M, pH 2.5) solution containing 0.55 M hydroxylamine, a preconcentration potential of - 0.70 V, and a scan rate of 5 mV/s. With a 7 min accumulation period the detection limit was 3${\times}$10-10 M. The possible interferences by other platinum group metals are investigated.

  • PDF

Determination of measuring time for decision of heavy metal ion concentration in Square Wave Voltammetry with FPGA (FPGA를 이용한 네모파 전압전류법의 계측시간 분석)

  • Lee, Jaechoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.25-31
    • /
    • 2016
  • In this research, to analyze the concentration of heavy metal ions in water, we tried to find the measuring time at which the faradaic electric currents flowing by the pure oxidation-reduction reaction from the pushing up mercury electrode of the stripping scan square wave voltammetry(SV+SWV) methods system becomes larger than the capacitance electric current. In order to do this, a method for analyzing signals using FPGA has been designed and we conducted 120 experiments using it. As a result, when the frequency of the square wave is 40Hz, The valid potential-current signal was measured from 96.6667% to 96.7155% of the end of the pulse of the forward and reverse, and the optimal signal was measured at 96.6667%. In addition, the experiment was carried out 40 times by changing the pulse height of the square wave from 10Mv to 40Mv. As a result, at a size smaller than 40Mv, there is little change in the magnitude of the potential-current, and an invalid signal was generated when it is out of this size.

Detection of chlorine in tap water using a metal gold electrode (금속 Au 전극을 이용한 먹는 물 속 염소 이온 검출)

  • Ly, Suw-Young;Choa, Sung-Hoon
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.219-224
    • /
    • 2011
  • Voltammetric analysis of Cl(I) ion was performed using a metal gold (Au) electrode (AE) and a carbon nanotube electrode (CNTE). After the examination, the AE was found to have more sensitively detected Cl(I) than CNTE. The optimum analytical conditions for the cyclic voltammetry (CV) and the square wave (SW) stripping voltammetry were performed using AE. The detection limit of $6.5\;{\mu}g/L$ Cl(I) was attained. The developed techniques were compared with the common Cl meter and applied to water systems.

Determination of Frequency for decision of heavy metal ion concentration in Square Wave Voltammetry with FPGA SoC (FPGA SoC를 이용한 네모파 전압전류법의 주파수 변화에 따른 계측 분석)

  • Lee, Jaechoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.101-107
    • /
    • 2018
  • In the stripping scan square wave voltammetry (SV+SWV) polarography that is often used to analyze the concentration of heavy metals in water, we must measure the point where the faradic current that flows by the pure oxidation-reduction reaction at the electrode is greater than the capacitive current, the frequency cannot be too high. Therefore we wanted to find the frequency range that can be measured. In order to do this, we came up with a method to analyze the signal using FPGA Soc. With this method, the frequency of the square wave was increased from 10Hz to 400Hz by 10Hz, and the measuring time of the square wave was changed from 96.695% to 96.765% by 0.005% while 1600 experiments were conducted. As a result, the frequency of the square wave maintained a stable area of potential-current within 320Hz and it was possible to measure the potential-current signal when calculating the measuring time within the frequency range of 96.7155%.

Square-Wave Anodic Stripping Voltammetric Study of Germanium(Ⅳ)-Morin Complex (Germanium(Ⅳ)-Morin 착물에 대한 네모파 양극벗김 전압전류법적 연구)

  • Sohn, Se Chul;Park, Yong Joon;Joe, Kih Soo
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.11
    • /
    • pp.590-593
    • /
    • 1997
  • Square-wave anodic stripping voltammetry was applied to the germanium(IV)- Morin complex in 0.5 M sulfuric acid as a supporting electrolyte. The peak potential appeared at - 0.606 V vs. Ag/AgCl. Effects of sulfuric acid concentration, Morin concentration, accumulation potential, and accumulation time on the stripping peak current for the complex of germanium(IV)-Morin were studied. Interferences by other metal cations that affect on stripping peak current were also investigated. The detection limit was found to be $3.76{\times}10^{-7}M(27 {\mu}g/L)$ for germanium(IV) using 60 seconds of accumulation time. The relative standard deviation (n=8) for 0.4 mg/L($5.5{\times}10^{-6}$ M) germanium(IV) was 3.2%.

  • PDF