• Title/Summary/Keyword: Strike-slip Fault

Search Result 136, Processing Time 0.026 seconds

Paleoseismological Study and Evaluation of Maximum Earthquake Magnitude along the Yangsan and Ulsan Fault Zones in the Southeastern Part of Korea (남한 남동부 양산단층대와 울산단층대의 고지진 연구와 최대 지진 규모 평가)

  • Kyung, Jai-Bok
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • The paleoseismological study in Korea has begun along the Yangsan fault zone (YFZ) and Ulsan fault zone (UFZ) since 1994. Some evidences related to late Quaternary movement are found at only some part of the YFZ, such as Pyonghae, Yuge, and Eonyang-Tongdosa areas. However, it is found along the most of the UFZ except the northen and southern ends of the fault. The dominant time span of faulting events along the YFZ and UFZ are quite different, and 500 ka to 200 ka and 300 ka to recent time, respectively. The dominant faulting senses of the YFZ and UFZ are right-lateral strike slip and reverse, respectively. These senses correspond well with the focal mechanism of recent occurring earthquakes along these two fault zones. If we evaluate the intensity of the activity of the YFZ from the average slip rate, which is 0.1~0.04 m/ka, it is comparable with the faults of higher C class in Japan. The slip rate of UFZ, which is 0.2~0.06 m/ka, is comparable with the faults of lower B to higher C class. Based on the relationship between maximum displacement and magnitude, the maximum earthquake magnitude is evaluated to be 6.8 and 7.0 in the YFZ and UFZ, respectively. An intensive studies are needed to clarify the problems such as segmentation of faults, return period, and geological evidences related to historical earthquakes.

The Active Fault Topography of the Northern Partof the Bulguksa Fault System in Kyungju City, Southeastern Korea (한국 남동부 청주시 불국사단층선 북부의 활단층지형)

  • 윤순옥;황상일
    • Journal of the Korean Geographical Society
    • /
    • v.34 no.3
    • /
    • pp.231-246
    • /
    • 1999
  • The geomorphic deformation of the alluvial fans by tectonic movement was investigated along the lineaments of the northern part of the Bulguksa fault system. Based on the aerial photographs interpretation and field surveys Bulguksa fault system was identified as an active reverse fault which has displaced the Quaternary fan deposits. Bulguksa fault system strikes for the direction of NW-SE and N-S. These two lineaments of active fault are crossing at Jinty village in Kyungju city and the fault plane forms here almost vertical dip. Thelateral pressures from the two directions have possibly influenced on the formation of the vertical dip at Jinty village. It should be resulted from that the two pressures responsible for the active reverse fault at which the one with the NW-SE strike thrusts the hanging wall of Tohamsan block southwestward and the other pressure with the N-S jstrike thrusts it westwrd over the foot wall of the fan deposits. The marine oxygen isotope stage 8(0.30-0.25 Ma. BP) and stage 6(0.20-0.14 Ma. BP) are presumed to be the ages of high and middle surfaces of the alluvial fan, repectively. The vertical dispiacements on the high surface along the Bulguksa fault system are about 10.5m at Ha-dong, 9.5-10.5m at Jinhyun-dong, and about 10m at Jinty village. And the vertical displacement on the middle surface was measured about 6m high at Ha-dong. The average slip rate of vertical displacements is calculated about 0.03-0.043mm/y.

  • PDF

Fracture Characteristics and Segmentation of Yangsan Fault around Mt. Namsan, Gyeongju City, Korea (경주 남산 일대의 단열구조 특성과 양산단층의 분절)

  • Kim, Heon-Joo;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • Fractures and segmentation in association with the activities of the Yangsan fault are studied around Mt. Namsan, Gyengju city in the southeastern part of Korea. It is believed that the higher values of joint density and fractal dimension with the approach of the center of the Yangsan fault mean intense fracturing due to the fault activity. The boundary between fault damage zone and host rock is inferred to be placed at about 2.7 km from the center of the Yangsan fault where the values of joint density and fractal dimension abruptly decrease and the orientations of joint are also much dispersed. The small faults within the damage zone of the Yangsan fault are definitely divided into right-lateral and left-lateral strike-slip faults. The former is considered to be formed during the right-lateral movement of the Yangsan fault and the latter during the left-lateral movement. The Yangsan fault is segmented in the study area with obvious evidences as follows: (1) the difference of fault strike between northern and southern segments, (2) The geometry of contractional imbricate fans and syncline plunging $9^{\circ}$, $S85^{\circ}E$ at the end of northern segment, and (3) anticline plunging $28^{\circ}$, $N4^{\circ}W$ at the end of southern segment.

Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field (한반도 남동부 제4기 단층의 대자율이방성(AMS): 단층의 운동감각과 고응력장 해석)

  • Cho, Hyeongseong;Kim, Min-Cheol;Kim, Hyeonjeong;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.75-103
    • /
    • 2014
  • The Quaternary faults are extensively observed along major inherited fault zones (i.e. Yangsan Fault System, Ulsan Fault, Yeonil Tectonic Line, Ocheon Fault System) in SE Korea. Their geometry and kinematics provide a very useful piece of information about the Quaternary crustal deformation and stress field in and around Korean Peninsula. Using magnetic fabrics (AMS), we attempted to determine the slip senses of Jinti, Mohwa, Suseongji2, and Wangsan faults and then interpreted the fabric development process of fault gouge and the characteristics of stress field during the Quaternary. All the magnetic fabrics of the faults, except the Wangsan Fault, consistently indicate a dominant reverse-slip sense with weak strike-slip component. Most of the oblate fabrics are nearly parallel to the fault surface and the anisotropy degrees generally increase in proportion to the oblatenesses. These results suggest that the fabrics of the fault gouges resulted from a progressive deformation due to continuous simple shear during the last reactivation stage as reverse faulting. It is also interpreted that the pre-existing fabrics were overwhelmed and obliterated by the re-activated faulting. Paleostress field calculated from the fault slip data indicates an ENE-WNW compressive stress, which is in accord with those determined from previous fault tectonic analysis, focal mechanism solution, and hydraulic fracturing test in and around Korean Peninsula.

A study of Kem County earthquake (Kern County 지진에 대한 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.2 no.2
    • /
    • pp.155-165
    • /
    • 1992
  • The purpose of this study is to evaluate compatability of seismic source characteristics of the Kern County earthquake to those of Korean Peninsula seismotectonics. The compatability could be used to make Korean type response spectrum from the strong ground motions observed from the assingned earthquake. The July 21, 1952, Kern County, California, earthquake is the largest earthquake to occur in the western U.S. since 1906, and the repeat of this event poses a significant seismic hazard. The Kern County event was a complex thrusting event, with a surface rupture pattern that varied from pure leftlateral strike-slip to pure dip-slip. A time dependent moment tensor inversion was applied to ten observed teleseismic long-period body waves to investigate the source complexity. Since a conventional moment tensor inversion(constant geometry through time) returns a non-double-couple source when the seismic source changes(fault orientation and direction of slip) with time, we are required to use the time dependent moment tensor which allows a first-order mapping of the geometric and temporal complexity. From the moment tensor inversion, a two-point seismic source model with significant overlap for the White Wolf fault, which propagates upward(20 km to 5 km) from SW to NE, fits most of the observed seismic waveforms in the least squares sense. Comparison of P, T and B axes of focal mechanisms and focal depths suggests that seismic source characteristics of the Kern County earthquake is consistant with those of Korean Peninsula Seismotectonics.

  • PDF

Developmental Aspects of Hongcheon Fe-REE Ore Body (홍천 철-희토류광체의 발달양상)

  • Lee, Han Yeang;Ryoo, Chung Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.397-403
    • /
    • 2012
  • Fe-REE deposits occurred in Jaeunri, Hongcheon formed by carbonatitic melts consist of 3 parts such as northern, middle and southern ore bodies showing discontinuous distribution, and extension shape of ore bodies can be figured through field survey and geometric analysis. Foliations in gneiss around northern and middle ore bodies represent NNE, whereas toward south its direction changes gradually from NE to ENE and finally N-S direction appears in southern ore body. From Jaeungyo to Saemaeulgyo geometric analysis from field work gives that fold shape in this area is open synclinal fold concavely and gently to NW with $45^{\circ}$ northwestward plunging axis, in contrast small scale anticline with $45^{\circ}$ northwestward plunging axis in Yagsooteo area near western part of Saemaeulgyo. Dragging effect could be occurred on these folds by WNW trending dextral strike-slip fault from Yagsooteo to Saemaeulgyo. New ore body can be confirmed from folding structure estimated by trend of foliation, and thus unidentified ore body may be exist under alluvial surface from middle to southern ore body and its distribution could show reversed "ㄱ", one of Korean consonants, considering with estimated strike and dip of foliations. This estimated extension of ore body figured out by structural analysis in the studied area works an important role for measuring of ore reserve and selecting of drilling site to find new ore body.

Geological Structure around Andong Fault System, Pungcheon-myeon, Andong, Korea (안동시 풍천면 안동단층계 주변의 지질구조)

  • Kang, Ji-Hoon;Lee, Duck-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.83-94
    • /
    • 2008
  • The Pungcheon-myeon, Andong, consists mainly of Precambrian metamorphic rocks, Jurassic igneous rocks, Cretaceous sedimentary rocks (Hasandong, Jinju and Iljik Formations) and Cretaceous igneous rocks (gabbroic rocks, dykes), in which several major faults are developed; Andong fault of ENE trend, which is the boundary fault of the Cretaceous Gyeongsang Basin and the Precambrian-Jurassic basement (Yeongnam Massif), Namhu fault parallel to it, Maebong fault of NNW direction, bow-shaped Gwangdeok fault of ENE direction which is convex toward SSE direction, and Hahoe fault of NNE direction. This paper is researched the geological structures around these major faults by means of the detailed geometric analysis on beddings, joints, faults and drag folds. As a result, a reverse slip faulting of top-to-the SSE movement accompanied with a regional drag folding is recognized from the arrangement of bedding poles measured around the Gwangdeok and Hahoe faults at its northeastern extension, and a zone of Gwangdeok drag fold of 150-300 m width, which is wider at the central and eastern parts of Gwangdeok fault and narrower at its western part and Hahoe fault, is also defined. It indicates that the Hahoe and Gwangdeok faults are a single fault and their movements are coeval unlike the results of earlier reasearchers. And, In this area are recognized two types of faults [(E)NE${\sim}$EW(fault I), WNW${\sim}$NNW (fault II), trending faults] and four types of joints [EW (I), (N)NW (II), NNE (III), NE (IV) trending joints]. These fractures were formed at least through four different events, named as Dn to Dn+3 phases. (1) Dn phase; the formation of joint (I) (Gwangdeok joint) and the intrusion of acidic dykes of EW trend under the compression of EW direction. (2) Dn+1 phase; the formations of joint (II) (Maebong joint), lens-shaped boudinage of acidic dykes, oblique-slip reverse fault (Fault I-Gwangdeok fault) under the compression of (N)NW direction, and the formation of regional zone of Gwangdeok drag fold accompanying the Gwangdeok faulting. (3) Dn+2 phase; those of joint (III), Fault II (Maebong fault) by dextral strike-slip movement of Maebong joint under the compression of NNE direction, and the extension cutting of Dn+1 structures due to the Maebong faulting. (4) Dn+3 phase; the jointing (IV) and the reactivation of Fault II as oblique-slip type with predominant dextral motion which took place under the compression of NE direction. It also suggests that the Maebong fault is not a tear fault deveolped during thrust tectonics of the Andong and Gwangdeok faults but is a post-fault during different tectonic event.

A COMPARATIVE STUDY OF 1819,1844 AND 2001 EARTHQUAKES IN GUJARAT

  • Rathore, Narpat Singh;Verma, Narender
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.366-368
    • /
    • 2003
  • The Rann of Kachchh in Gujarat in the Western part of India is seismically the most active area outside Himalayan Belt. Several severe earthquakes of which the 1819 Rann of Kachchh and 2001 Bhuj Earthquakes are the severest recorded have rocked the region. This paper is an attempt to make a comparative study of the 1819,1844 and 2001 earthquakes. The study of 1819 and 1944 earthquakes is based on secondary accounts while 2001 Bhuj earthquake is based on remote Sensing. From a comparative study of the three earthquakes many interesting conclusions can be drawn. These earthquakes have been the result of accumulation of stress caused due to the collision of Indian Plate with the Eurasian Plate, which is continuously moving northwards. The earthquakes have been felt over large part of the Indian Sub-continent. These have resulted in creation of several faults that have activated periodically. Prominent of them are the Allah Bund Fault, Manfara Fault and Budharmora Fault. These are strike slip faults that get periodically activated. In future too these faults are going to be the most vulnerable to any seismic activity with the probability of high intensity earthquakes occurring along them in future too.

  • PDF

Analysis on the Source Characteristics of the Recent Five-year Earthquakes Occurred in the Central and Western Areas of the Korean Peninsula (최근 5년간 한반도 중서부 지역에서 발생한 지진의 진원 특성 분석)

  • Back, Jin-Ju;Kyung, Jai-Bok;Choi, Ho-Seon
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Focal mechanism solutions in the central and western areas of the Korean Peninsula (36-37.8$^{\circ}N$, 126-128$^{\circ}E$) were obtained from the analysis of the recent seventeen earthquakes (M${\geq}$2.2) which occurred from January, 2005 to May, 2010. The spatial differences between the epicenters recalculated by this study and those announced by the Korea Meteorological Administration are less than $0.03^{\circ}$, indicating a small deviation. Focal mechanism solutions were obtained from the analysis of P wave polarities, SH wave polarities and SH/P amplitude ratios. The focal mechanism solutions show dominant strike-slip faulting or oblique slip faulting with strike-slip components. The P-axes trends are mainly ENE-WSW or E-W directions. The direction of fault plane and auxillary fault plane with NNE-SSW and WNW-ESE are almost parallel to the general trends of lineaments in the study area. The results also show that focal mechanism solutions and the main axis of stress field in the Kyonggi massif and Okchon belt are almost same.

A Paleoseismological Study of the Yangsan Fault-Analysis of Deformed Topography and Trench Survey (양산단층대의 고지진학적 연구 -변위지형 분석 및 트렌치 조사-)

  • Gyeong, Jae Bok;Lee, Gi Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.155-168
    • /
    • 1999
  • The paleoseismological importance of the Yangsan fault zone was examined by historical earthquake data, aerial photograph, and trench survey of the area. Occurrences of great earthquakes during the historical time indicate that the Yangsan and/or Ulsan fault have been active during the late Quaternary and generated historical events. Geomorphological evidences of the recent fault activity are clearly shown both in the northern segment (Yugye-ri, Tosung-ri and Naengsu-ri areas) and in the southern segment (Eonyang to Tongdosa areas) of the Yangsan fault. The main Yangsan fault is characterized by fault gouges and NNE-SSW lineaments. The reverse faulting in the Yugye-ri area generated about three-mater displacement of the lower terrace deposits. On the other hand, a major strike-slip movement with a minor component of 5-12 m vertical displacement was identified by the offset of the higher terrace surface in the Eonyang area.

  • PDF