• Title/Summary/Keyword: Striation

Search Result 135, Processing Time 0.031 seconds

Prediction of Failure Stress of Rocker Arm Shaft using FEM and Striation (FEM과 Striation을 이용한 로커 암 축의 파손응력 추정)

  • Lee, Soo-Jin;Lee, Dong-Woo;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.84-90
    • /
    • 2007
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure stress analysis of rocker arm shaft is needed. Because more than 30% of vehicles investigated have been fractured. Failure stress analysis is classified into an naked eyes, microscope, striation and X-ray fractography etc. Failure stress analysis by using striation is already established technology as means for seeking cause of fracture. But, although it is well known that striation spacing corresponds to the crack growth rate da/dN, it is not possible to determine ${\sigma}_{max}\;and\;{\sigma}_{min}$ under service loading only from striation spacing. This is because the value of striation spacing is influenced not only by ${\Delta}K$ but also by the stress ratio R. In the present paper, we determine the stress ratio using orthogonal array and ANOVA, and propose a prediction method of failure stress which is combined with FEM and striation.

A study on the reduction of ac loss of YBCO coated conductor by a mechanical striation method (기계적으로 분할된 YBCO 선재의 교류손실 감소에 대한 연구)

  • Yoo, Yong-Su;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • High temperature superconductor (HTS) coated conductors has high hysteretic magnetization loss which is an obstacle for the AC applications of coated conductors. We propose a method to reduce the magnetization loss of the coated conductor. It is the mechanical striation method by load variety using office knife. The magnetization loss measured in the mechanical striated YBCO coated conductor without copper layer was compared with the loss generated by perpendicularly exposed external magnetic filed. The reduction in magnetization loss due to the mechanical striation is clearly shown at higher field and was dependent on the striation number. The mechanical striation method was proven to have additional advantages of a low cost and high fabrication process.

A Correlation of Striation Spacing and DHC Velocity in Zr-2.5Nb Tubes (Zr-2.5Nb 압력관에서 Striation Spacing과 DHCV의 관계)

  • Choi Seung Jun;Ahn Sang Bok;Park Soon Sam;Kim Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1109-1115
    • /
    • 2004
  • The objective of this study is to elucidate what governs delayed hydride cracking (DHC) in Zr-2.5Nb tubes by correlating the striation spacings with DHCV(DHC Velocity). To this end, DHC tests were conducted on the compact tension specimens taken from the Zr-2.5Nb tubes at different temperatures ranging from 100 to $300^{\circ}C$ with a 3 to 6 data set at each test conditions. The compact tension specimens were electrolytically charged with 27 to 87 ppm H before DHC tests. After DHC tests, the striation spacings and DHCV were determined with the increasing the test temperature and yield strength. The striation spacing and DHCV increased as a function of yield $strength^2$ and the temperature. Since the plastic zone size ahead of the crack tip can be represented by ${\sim}(K_{IH}/{\sigma}_{Y})^2$, we conclude that the striation spacing is governed by the plastic zone size which in turn determines a gradient of hydrogen concentration at the crack tip. The relationship between the plastic zone size and the striation spacing was validated through a complimentary experiment using double cantilever beam specimens. Two main factors to govern DHCV of Zr-2.5Nb tubes are concluded to be hydrogen diffusion and a hydrogen concentration gradient at the crack tip that are controlled by temperature and yield strength, respectively. The activation energy of DHCV in the Zr-2.5Nb tubes is discussed on the basis of temperature dependency of hydrogen diffusion and the striation spacing.

Reduction Characteristics on Perpendicular Magnetization Loss in Transposed Stacking Conductor of Striated YBCO CC (분할형 YBCO CC들을 전위한 적층도체의 수직 자화손실 저감 특성)

  • Lee, J.K.;Byun, S.B.;Han, B.W.;Park, S.H.;Choi, S.J.;Kim, W.S.;Park, C.;Choi, K.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.15-19
    • /
    • 2009
  • Recently, it is proposed to make striations on the YBCO coated conductor and to transpose each other as one of the solutions to decrease the perpendicular magnetization loss. For large power application using HTS, the stacked conductor packing the YBCO coated conductors should be used because single conductor is limited in flowing of demanded large current. In this paper, we research the affect of the striation and continuously transposed stacking geometry on the magnetization loss in perpendicularly exposed magnetic field. Several short samples having different number of striation and continuously transposed stack are prepared and tested in perpendicularly exposed magnetic field for the magnetization loss characteristics. The magnetization loss of striated sample was lower than sample without striation. The reduction effect on magnetization loss by the striation is obviously appeared in higher field and lower number of stack and decreased as increasing the transposed stacking number. Also, the reduction effect by transposed stack is obviously appeared in lower field at lower number of striation and isn't appeared at higher striation number and higher magnetic field.

Mechanism of Striation in Plasma Display Panel Cell

  • Yang, Sung-Soo;Iza, Felipe;Kim, Hyun-Chul;Lee, Jae-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.167-170
    • /
    • 2005
  • The mechanism of striation in the coplanar- and matrix-type plasma display panel (PDP) cells has been studied using the particle-in-cell Monte-Carlo Collision (PIC-MCC) model. The striation formation is related to the ionization energy of neutral atoms and the well-like deformation of space potential by space charge distribution. Negative wall charge accumulation by electrons on the MgO surface of the anode region is also one of the key factors for the formation of striation. The clearness of the striation phenomenon in PIC-MCC code in comparison with fluid code can be explained by using nonlocal electron kinetic effect.

  • PDF

The Observation of Fatigue Striations for Aluminum Alloy by Atomic Force Microscope(AFM) (원자력 현미경(AFM)에 의한 알루미늄 합금의 피로 스트라이에이션 관찰)

  • Choe, Seong-Jong;Gwon, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.955-962
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) was shown to be the powerful tool for nano-scale characterization of a fracture surface . AFM was used to study cross sectional profiles and dimensions of fatigue striations in 2017-T351 aluminum alloy. Their widths (SW) and heights (SH) were measured from the cross sectional profiles of three-dimension AFM images. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Coincidence of the crack growth rate with the striation width was found down to the growth rate of 10-5 mm/cycle. (2) The relation of SH=0.085(SW)1.2 was obtained. (3) The ratio of the striation height to its width SH/SW did not depend on the stress intensity factor range K and the stress ratio R. (4) Not only the SW but also the SH changed linearly with the crack tip opening displacement (CTOD) when plotted in log-log scale. From these results, the applicability of the AFM to nano-fractography is discussed.

Influence of the Shear Property of Seabed Appearing in the Striation Pattern of the Spectrogram of Ship-radiated Noise Measured in a Shallow Sea (천해에서 측정한 선박 방사소음 스펙트로그램의 줄무늬 패턴에 나타나는 해저면 전단성 영향)

  • Lee, Seong-Wook;Hahn, Joo-Young;Baek, Woon;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • This paper represents the results of interpretation on the cause of sign changing of the striation slopes appearing in the range-frequency domain spectrogram of ship-radiated noise measured in a shallow sea. Striation patterns and dispersion characteristics simulated from a numerical model based on mode theory at various seabed conditions show that the sign changing of the striation slopes appearing in measured signal is caused by the shear property of seabed. more specifically by the shear property of the basement lying below the sediment which is estimated about 3±1m thick.

Nano-Scale Observation of Fatigue Striations for Aluminum Alloy (알루미늄 합금 피로 스트라이에이션의 나노 스케일 관찰)

  • Choe, Seong-Jong;Gwon, Jae-Do;Ishii, Hitoshi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1047-1054
    • /
    • 2001
  • Atomic Force Microscope (AFM) was used to study cross sectional profiles and dimensions of fatigue striations in 2017-T351 aluminum alloy. Their widths(SW) and heights (SH, SH(sub)h, SH(sub)ι) were measured from the cross sectional profiles of three-dimension AFM images. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) The relation of SH=$\alpha$(SW)(sup)1.2 was obtained. (2) The ratio of the striation height to its width SH/SW, SH(sub)h/SW and SH(sub)ι/SW did not depend on the stress intensity factor range ΔK and the stress ratio R( =P(sub)min/P(sub)max = K(sub)min/K(sub)max). (3) Effect of precipitate on the morphology of striation was changed by the relative dimensional difference between the striation width SW and the precipitates. From these results, the applicability of the AFM to nano-fractography is discussed.

Nano-Scale Observation of Fatigue Striations for Aluminum Alloy (알루미늄 합금 피로 스트라이에이션의 나노 스케일 관찰)

  • Choi, Sung-Jong;Kwon, Jae-Do;Ishii, Hitoshi
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.153-158
    • /
    • 2000
  • Atomic Force Microscope (AFM) was used to study cross sectional profiles and dimensions of fatigue striations in 2017-T351 aluminum alloy. Their widths (SW) and heights $(SH,\;SH_h)$ were measured from the cross sectional Profiles of three-dimension AFM images. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Coincidence of the crack growth rate with the striation width was found down to the growth rate of $10^{-5}$ mm/cycle. (2) The relation of $SH={\alpha}(SW)^{1.2}$ was obtained. (3) The ratio of the striation height to its width SH/SW and did not depend on the stress intensity factor range ${\Delta}K$ and the stress ratio R. From these results, the applicability of the AFM to nano-fractography is discussed.

  • PDF