• Title/Summary/Keyword: Stretchable electronic packaging

Search Result 16, Processing Time 0.018 seconds

Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible·Stretchable Electronics (유연·신축성 전자 소자 개발을 위한 은 나노와이어 기반 투명전극 기술)

  • Kim, Dae-Gon;Kim, Youngmin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Among them, Ag nanowires are particularly interesting to synthesize because bulk Ag exhibits the highest electrical conductivity among all metals. Here we reviewed recently-published research works introducing various devices from organic light emitting diode to tactile sensing devices, all of which are employing AgNW for a conducting material. They proposed methods to enhance the stretchability and reversibility of the transparent electrodes, and apply them to make various flexible and stretchable electronics. It is expected that Ag nanowires are applicable to a wide range of high-performance, low-cost, stretchable electronic devices.

Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging (유연/신축성 전자패키징 용 폴리머 재료의 기계적 물성 측정 기술 리뷰)

  • Kim, Cheolgyu;Lee, Tae-Ik;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.19-28
    • /
    • 2016
  • This paper presents an overview of selected advanced measurement technologies for the mechanical properties of polymers used for flexible and stretchable electronic packaging. Over the years, a variety of flexible and stretchable electronics have been developed due to their potential applications for next generation IT industry. To achieve more flexible and wearable devices for practical applications, the usage of polymeric components has been increased significantly. Therefore, accurate measurement of mechanical properties of the polymers is necessary in order to design mechanically reliable devices. However, the measurement has been challenging due to the soft nature and thin applications of polymers. Here, we describe novel measurement technologies of mechanical properties of polymers for flexible and stretchable electronics.

Technology of Stretchable Interconnector and Strain Sensors for Stretchable Electronics (신축성 전자소자를 위한 신축성 전극 및 스트레인 센서 개발 동향)

  • Park, Jin Yeong;Lee, Won Jae;Nam, Hyun Jin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.25-34
    • /
    • 2018
  • In this paper, we review the latest technical progress and commercialization of stretchable interconnectors, stretchable strain sensors, and stretchable substrates for stretchable electronics. The development of stretchable electronics can pave a way for new applications such as wearable devices, bio-integrated devices, healthcare and monitoring, and soft robotics. The essential components of stretchable electronic devices are stretchable interconnector and stretchable substrate. Stretchable interconnector should have high stretchability and high electrical conductivity as well as stability under severe mechanical deformation. Therefore several nanocomposite-based materials using CNT, graphene, nanowire, and metal flake have been developed. Geometric engineering such as wavy, serpentine, buckled and mesh structure has been well developed. Stretchable substrate should also pose high stretchability and compatibility with stretchable sensing or interconnecting material. We summarize the recent research results of new materials for stretchable interconnector and substrate as well as strain sensors. The Important challenges in development of the stretchable interconnector and substrate are also briefly discussed.

Stretchable Deformation-Resistance Characteristics of the Stiffness-Gradient Stretchable Electronic Packages Based on PDMS (PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성)

  • Park, Dae Ung;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.47-53
    • /
    • 2019
  • Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/PTFE structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff polytetrafluoroethylene (PTFE) as the island substrate, and their stretchable deformation-resistance characteristics were characterized. The flip-chip joints, formed by bonding the chip bumps of 50 ㎛-diameter onto the PDMS/PTFE substrate pads, exhibited an average contact resistance of 96 mΩ. When the stretchable package of the soft PDMS/hard PDMS/PTFE structure was deformed to 30% elongation, the strain on the PTFE was restrained to 1%, resulting in a negligible resistance increase of 1% in the daisy-chain circuit formed on the PTFE island substrate. The circuit resistance increased for 1.7% after 2,500 cycles of 0~30% stretchable deformation.

Technical Trends of Stretchable Electrodes (신축성 전극 기술 개발 동향)

  • Choi, Su Bin;Lee, Cheul-Ro;Jung, Seung-Boo;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.23-36
    • /
    • 2019
  • Stretchable electronic systems have recently been gaining more and more attention because of their potential applications in various implements such as electronic skins and wearable/shape-deformable electronics. An essential factor of the stable stretchable device implementation is that all the elements constituting the system must have sufficient elasticity and exhibit stable performances even under repetitive stretching conditions. In this paper, we review the latest research results to secure the stable stretchability of electrodes among the various components of the system.

Elastic Properties and Repeated Deformation Reliabilities of Stiffness-Gradient Stretchable Electronic Packages (강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2019
  • Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/FPCB structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate. The elastic characteristics of the stretchable packages were estimated and their long-term reliabilities on stretching cycles and bending cycles were characterized. With 0.28 MPa, 1.74 MPa, and 1.85 GPa as the elastic moduli of the soft PDMS, hard PDMS, and FPCB, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was estimated as 0.6 MPa. The resistance of the stretchable packages varied for 2.8~4.3% with stretching cycles ranging at 0~0.3 strain up to 15,000 cycles and for 0.9~1.5% with 15,000 bending cycles at a bending radius of 25 mm.

Research Trends in Thermal Interface Materials for Flexible and Stretchable Electronic Device (유연신축성 전자 디바이스를 위한 열계면 소재 연구동향)

  • Young-Joo Park;Geon-Joo Jeong;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • In the trend of the multi-functionalization, miniaturization, and increased power output trends of flexible and stretchable electronic devices, the development of materials or structures with superior heat transfer characteristics has become a pressing issue. Traditional thermal interface materials (TIM) fail to meet the heat dissipation requirements of flexible and stretchable electronic devices, which must endure rapid bending, twisting, and stretching. To address this challenge, there is a demand for the development of TIM that simultaneously possesses high thermal conductivity and stretchability. This paper examines the research trends of liquid metal, carbon, and ceramic-based stretchable thermal interface materials and explores effective strategies for enhancing their thermal and mechanical properties.

Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging (신축성 전자패키징을 위한 CNT-Ag 복합패드에서의 플립칩 공정)

  • Choi, Jung Yeol;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.17-23
    • /
    • 2013
  • As a basic research to develop stretchable electronic packaging technology, CNT-Ag composite pads were formed on top of Cu/Sn chip bumps and flip-chip bonded using anisotropic conductive adhesive. Average contact resistances of the flip-chip joints were measured with respect to bonding pressure and presence of the CNT-Ag composite pads. When Cu/Sn chip bumps with CNT-Ag composite pads were flip-chip bonded to substrate Cu pads at 25MPa or 50 MPa, contact resistance was too high to measure. The specimen processed by flip-chip bonding the Cu/Sn chip bumps with CNT-Ag composite pads to the substrate Cu pads exhibited an average contact resistance of $213m{\Omega}$. On the other hand, the flip-chip specimens processed by bonding Cu/Sn chip bumps without CNT-Ag composite pads to substrate Cu pads at 25MPa, 50MPa, and 100MPa exhibited average contact resistances of $370m{\Omega}$, $372m{\Omega}$, and $112m{\Omega}$, respectively.

Mechanical and Optical Characteristics of Transparent Stretchable Hybrid Substrate using PDMS and Ecoflex Material (PDMS-Ecoflex 하이브리드 소재를 이용한 투명 신축성 기판의 기계적 및 광학적 특성)

  • Lee, Won Jae;Park, So-Yeon;Nam, Hyun Jin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.129-135
    • /
    • 2018
  • In the stretchable electronic devices, the stretchable substrate is a very essential material which determines the stretchability, performances and durability of the stretchable electronic devices. In particular, the current stretchable materials have hysteresis making difficult to used as sensors and other electronic devices. In this study, we developed a PDMS-Ecoflex hybrid stretchable substrate mixed with PDMS and Ecoflex material in order to increase stretchability and improve hysteresis characteristics. Mechanical behavior of the hybrid substrate was evaluated using a tensile test, and optical transmittance of the hybrid substrate was also measured. As the content of Ecoflex increases, the PDMS-Ecoflex hybrid substrate becomes more flexible, and the elastic modulus decreases. In addition, the PDMS substrate failed a tensile strain of 270%, while the PDMS-Ecoflex hybrid substrate did not fail even at 500% strain indicating excellent stretchability. In the repeated tensile test, the hybrid substrate with 2:1 mixing ratio of PDMS and Ecoflex showed hysteresis. On the other hand, in the case of the hybrid substrate with the mixing ratio of 1:1, hysteresis did not occur at a strain of 50% and 100%. Hence, we developed a stretchable substrate with over 150% stretchability and no hysteresis characteristics. The optical transmittance of the Ecoflex substrate was 68.6%, whereas the transmittances of the hybrid substrate with mixing ratio of 2:1 and 1:1 were 78.6% and 75.4%, respectively. These results indicate that the PDMS-Ecoflex hybrid substrate is a potential candidate for a transparent stretchable substrate.

Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications (신축성 전자패키징용 강성도 국부변환 polydimethylsiloxane 기판의 탄성계수)

  • Oh, Hyun-Ah;Park, Donghyeun;Han, Kee-Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • In order to apply to stretchable electronics packaging, locally stiffness-variant stretchable substrates consisting of island structure were fabricated by combining two polydimethylsiloxane elastomers of different stiffnesses and their elastic moduli were characterized as a function of the width of the high-stiffness island. The low-stiffness substrate matrix and the embedded high-stiffness island of the stretchable substrate were formed by using Dragon Skin 10 of the elastic modulus of 0.09 MPa and Sylgard 184 of the elastic modulus of 2.15 MPa, respectively. A stretchable substrate was fabricated to be a configuration of 6.5-cm length, 0.4-cm thickness, and 2.5-cm width, in which a high-stiffness Sylgard 184 island, of 4-cm length, 0.2-cm thickness, and 0.5~1.5-cm width, was embedded. The elastic modulus of a stretchable substrate was increased from 0.09 MPa to 0.16 MPa by incorporating the Sylgard 184 island of 0.5-cm width to Dragon Skin 10 substrate matrix. The elastic modulus was further improved to 0.18 MPa and 0.2 MPa with increasing the Sylgard 184 island width to 1.0 cm and 1.5 cm, which were in good agreement with values estimated by combining the Voigt structure of isostrain and the Reuss structure of isostress.