References
- R. James, "The Future of the High-Performance Semiconductor Industry and Design", Proc. 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 65, 32-35, IEEE (2022).
- C. C. Wang, Y. C. Huang, T. K. Chang, and Y. Lin, "A new semiconductor package design flow and platform applied on high density fan-out chip", Proc. 2021 71st Electronic Components and Technology Conference (ECTC), San Diego, 112-117, IEEE (2021).
- P. Y. Lin, M. C. Yew, S. S. Yeh, S. M. Chen, C. H. Lin, C. S. Chen, and S. P. Jeng, "Reliability Performance of Advanced Organic Interposer (CoWoSR-R) Packages", Proc. 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 723-728, IEEE (2021).
- A. R. A. Rahman, and N. A. Nayan, "Critical challenges and solutions for device miniaturization in integrated circuit packaging technology", J. Eng. Appl. Sci., 13(15), 6025-6032 (2019).
- J. Hansson, T. M. Nilsson, L. Ye and J. Liu, "Novel nanostructured thermal interface materials: a review", International Materials Reviews, 63(1), 22 (2018).
- R. Mahajan, Z. Qian, R. S. Viswanath, S. Srinivasan, K. Aygn, W. L. Jen, and A. Dhall, "Embedded multidie interconnect bridge A localized, high density multichip packaging interconnect", IEEE Trans. Compon. Packaging Manuf. Technol., 9(10), 1952-1962 (2019). https://doi.org/10.1109/TCPMT.2019.2942708
- K. M. Razeeb, E. Dalton, G. L. W. Cross and A. J. Robinson, "Present and future thermal interface materials for electronic devices", International Materials Reviews, 63(1), 1-21 (2018). https://doi.org/10.1080/09506608.2017.1296605
- R. Bahru, M. F. M. A. Zamri, A. H. Shamsuddin, N. Shaari and M. A. Mohamed, "A review of thermal interface material fabrication method toward enhancing heat dissipation", International Journal of Energy Research, 45(3), 3548-3568 (2021). https://doi.org/10.1002/er.6078
- R. Viswanath, V. Wakharkar, A. Watwe and V. Lebonheur, "Thermal performance challenges from silicon to systems", Intel Technology, 4(3), 1 (2000).
- L. Maguire, M. Behnia and G. Morrison, "Systematic evaluation of thermal interface materials-a case study in high power amplifier design", Microelectronics Reliability, 45(3-4), 711-725 (2005). https://doi.org/10.1016/j.microrel.2004.10.030
- J. A. Rogers, T. Someya and Y. Huang, "Materials and mechanics for stretchable electronics", Science, 327(5973), 1603 (2010).
- J. H. Lee, J. Y. Song, S. M. Kim, Y. J. Kim and A. Y. Park, "Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly", J. Microelectron. Packag. Soc., 26(2), 31 (2019).
- T. S. Oh, "Analysis on Effective Elastic Modulus and Deformation Behavior of a Stiffness-Gradient Stretchable Electronic Package with the Island-Bridge Structure", J. Microelectron. Packag. Soc., 26(4), 39-46 (2019).
- D. W. Kim, M. Kong and U. Jeong, "Interface design for stretchable electronic devices", Advanced Science, 8(8), 2004170 (2021).
- H. Ma, B. Gao, M. Wang, Z. Yuan, J. Shen, J. Zhao and Y. Feng, "Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review", Journal of Materials Science, 56, 1064-1086 (2021). https://doi.org/10.1007/s10853-020-05279-x
- J. A. Rogers, T. Someya and Y. Huang, "Materials and mechanics for stretchable electronics", Science, 327(5973), 1603-1607 (2010). https://doi.org/10.1126/science.1182383
- H. Zhu, X. Wang, J. Liang, H. Lv, H. Tong, L. Ma, Y. Hu, G. Zhu, T. Zhang, Z. Tie, Z. Liu, Q. Li, L. Chen, J. Liu and Z. Jin "Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites", Advanced Functional Materials, 27(21), 1606604 (2017).
- X. Wang, C. Lu and W. Rao, "Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications", Applied Thermal Engineering, 192, 116937 (2021).
- Y. Wang, Z. Zhou, J. Zhou, L. Shao, Y. Wang and Y. Deng, "High-performance Stretchable Organic Thermoelectric Generator via Rational Thermal Interface Design for Wearable Electronics", Advanced Energy Materials, 12(1), 2102835 (2022).
- S. N. Hapuarachchi, J. Y. Nerkar, K. C. Wasalathilake, H. Chen, S. Zhang, A. P. O'Mullane and C. Yan, "Utilizing Room Temperature Liquid Metals for Mechanically Robust Silicon Anodes in Lithium-Ion Batteries", Batteries& Supercaps, 1(3), 122-128 (2018). https://doi.org/10.1002/batt.201800047
- J. H. Bae and Y. C. Sohn, "Study on the Interfacial Reactions between Gallium and Cu/Au Multi-layer Metallization", J. Microelectron. Packag. Soc., 29(2), 73 (2022).
- S. H. Jeong, S. Chen, J. Huo, E. K. Gamstedt, J. Liu, S. Zhang, Z. Zhang, K. Hjort and Z. Wu, "Mechanically stretchable and electrically insulating thermal elastomer composite by liquid alloy droplet embedment", Scientific Reports, 5(1), 18257 (2015).
- D. Zrnic and D. Swatik "On the resistivity and surface tension of the eutectic alloy of gallium and indium", Journal of the Less Common Metals, 18(1), 67-68 (1969). https://doi.org/10.1016/0022-5088(69)90121-0
- M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz and G. M. Whitesides, "Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature", Advanced Functional Materials, 18(7), 1097 (2008).
- M. D. Dickey, "Emerging applications of liquid metals featuring surface oxides", ACS Applied Materials & Interfaces, 6(21), 18369 (2014).
- R. F. Hill and P. H. Supancic, "Thermal conductivity of platelet-filled polymer composites", Journal of the American Ceramic Society, 85(4), 851-857 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00183.x
- K. Huang, W. Qiu, M. Ou, X. Liu, Z. Liao and S. Chu, "An anti-leakage liquid metal thermal interface material", RSC Adv., 10(32), 18824 (2020).
- A. T. Haque, R. Tutika, R. L. Byrum and M. D. Bartlett, "Programmable liquid metal microstructures for multifunctional soft thermal composites", Adv. Funct. Mater., 30(25), 2000832 (2020).
- M. D. Dickey, "Stretchable and soft electronics using liquid metals." Advanced Materials, 29(27), 1606425 (2017).
- Y. Fan, Y. Wang and J. Qiu, "Elastomeric thermal interface materials with high through-plane thermal conductivity by 3D printing.", Advanced Materials, 26(33), 5857 (2014).
- Q. Wu, W. Li, C. Liu, Y. Xu, G. Li, H. Zhang, J. Huang and J. Miao , "Carbon fiber reinforced elastomer thermal interface materials for spacecraft", Carbon, 187, 432 (2022).
- J. Ma, T. Shang, L. Ren, Y. Yao, T. Zhang , J. Xie, B. Zhang, X. Zeng, R. Sun, J.B. Xu and C. P. Wong, "Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material", Chemical Engineering Journal, 380, 122550 (2020).
- J. Li, Z. Ye, P. Mo, Y. Pang, E. Gao, C. Zhang, G. Du, R. Sun and X. Zeng, "Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management", Composites Science and Technology, 234, 109948 (2023).
- X. Liu, Z. Wang, J. Sun, Z. Zhao, S. Zhan, Y. Guo, H. Zhou, W. Liu, J. Wang and T. Zhao, "Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities", Composites Science and Technology, 202, 108558 (2021).
- H. He, Y. Zhang, X. Zeng, Z. Ye, C. Zhang, T. Liang, J. Li, Q. Hu and P. Zhang, "Thermally conductive and stretchable thermal interface materials prepared via vertical orientation of flake graphite", Composites Communications, 202, 100795 (2021).
- M. Tayebi, M. Tayebi, M. Rajaee, V. Ghafarnia and A. M. Rizi, "Improvement of thermal properties of Al/Cu/SiC composites by tailoring the reinforcement microstructure and comparison to thermoelastic models", Journal of Alloys and Compounds, 853, 156794 (2021).
- J. Chen, X. Cui, Y. Zhu, W. Jiang and K. Sui, "Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions", Carbon, 114, 441 (2017).
- W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan, L. Lv, N. Jiang, Y. Wang and C. L, "Metal-level thermally conductive yet soft graphene thermal interface materials", ACS Nano, 13(10), 11561 (2019).
- M. Wang, T. Li, Y. Yao, H. Lu, Q. Li, M. Chen and Q. Li, "Wafer-scale transfer of vertically aligned carbon nanotube arrays", Journal of the American Chemical Society, 136(52), 18156 (2014).
- W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, "Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition", Nano Letters, 10(5), 1645 (2010).
- Y. H. Yoon, S. G. Kwon, H. J. Yoo, Y. H. Shin, J. Y. Choi and H. Y. Lee, "Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors", ACS Nano, 8(5), 4580 (2014).
- O. H. Kwon, T. Ha, D. G. Kim, B. G. Kim, Y. S. Kim, T. J. Shin, W. G. Koh and H. S. Lim, "Anisotropy-driven high thermal conductivity in stretchable poly (vinyl alcohol)/hexagonal boron nitride nanohybrid films", ACS Applied Materials & Interfaces, 10(40), 34625 (2018).
- C. H. Kim, H. T. Kim and S. T. Lee, "High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate", J. Microelectron. Packag. Soc., 25(4), 95 (2018).
- W. L. Song, P. Wang, L. Cao, A. Anderson, M. J. Meziani, A. J. Farr and Y. P. Sun, "Polymer/boron nitride nanocomposite materials for superior thermal transport performance", Angewandte Chemie, 124(26), 6604 (2012).
- Y. Cui, Z. Qin, H. Wu, M. Li and Y. Hu, "Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management", Nature Communications, 12(1), 1284 (2021).
- F. Tian, B. Song, X. Chen, N. K. Ravichandran, Y. Lv, K. Chen, J. Y. Kim, Y. Zhou and Z. Ren, "Unusual high thermal conductivity in boron arsenide bulk crystals", Science, 361(6402), 582 (2018).
- C. Dames, "Ultrahigh thermal conductivity confirmed in boron arsenide", Science, 361(6402), 549 (2018).
- J. S. Kang, M. Li, H. Wu, H. Nguyen and Y. Hu, "Experimental observation of high thermal conductivity in boron arsenide", Science, 361(6402), 575 (2018).
- J. S. Kang, M. Li, H. Wu, H. Nguyen and Y. Hu, "Basic physical properties of cubic boron arsenide", Applied Physics Letters, 115(12), 122103 (2019).