• Title/Summary/Keyword: Stress-strength

Search Result 5,797, Processing Time 0.038 seconds

Effects of Heat-treatment on the Bending Fatigue Strength of SNC 815 Carburized Spur Gear (SNC 815 침탄치차의 굽힘피로강돈에 미치는 열처리법의 영향)

  • Lyu, Sung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.12-19
    • /
    • 1994
  • This paper deals with the bending fatigue strength of SNC815 carburized spur gears. The test gears are heat-treated by two different treatments. One is the direct quenching after car-burization. The other is treated by reheating and quenching. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. The S-N curves are obtained and illustrated. The fatigue strength of direct quenched gears is higher than that of reheated quenched gears. The fatigue strength is estimated from the hardness and the residual stress by using the experimental formula proposed by Tobe and Inoue. The estimated strength is close to the test results, and the validty of the formular is confirmed.

  • PDF

An Experimental Study on the Liquefaction Resistance Strength Using Real Earthquake Loadings Considering Seismic Magnitude in Moderate Earthquake Region (실지진하중을 이용한 중진지역에서의 액상화 저항강도에 관한 실험적 연구)

  • 김수일;최재순;박성용;박근보;심재욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.569-576
    • /
    • 2003
  • Based on the equivalent uniform stress concept Presented by Seed and Idriss, sinusoidal cyclic loads which simplified earthquake loads have been applied in evaluating the liquefaction resistance strength experimentally. However, the liquefaction resistance strength of soil based on the equivalent uniform stress concept can not exactly reflect the dynamic characteristics of the irregular earthquake motion. The liquefaction assessment method which was invented by using the equivalent uniform stress concept is suitable for the severe earthquake region such as Japan or USA, so the proper method to Korea is needed. In this study, estimation of the resistance to liquefaction was conducted by applying real earthquake loading to the cyclic triaxial test. From the test results, the characteristics of the fine sand under moderate earthquake were analyzed and compared with the results under strong earthquakes. Typically real earthquake loads used in this study are divided into two types - impact type and vibration type. Furthermore, results of the liquefaction resistance strength based on the equivalent uniform stress concept and tile concept using real earthquake loading were compared.

  • PDF

Fracture Mechanical Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint under Tension-Shear Load (인장-전단하중을 받는 IB형 일점 Spot 용접이음재의 파괴역학적 피로강도 평가)

  • 손일선;정원석;이휘광;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.20-27
    • /
    • 1998
  • According as the member of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. And, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic evaluation method for them. In this study, by considering nugget edge of the spot weld part of the IB-type spot welded lap joint under tension-shear load to the ligament crack. fatigue strength of various IB-type spot welded lap joints was estimated with the stress intensity factor(S.I.F.) KIII which is fracture mechanical parameter. We could find that fatigue strength evaluation of the IB-type spot welded lap joints by KIII is more effective than the maximum principal stress ($\sigma$1max) at edge of the spot weld obtained from FEM analysis.

  • PDF

Maximization in Reliability Design when Stress/Strength has Time Dependent Model of Deterministic Cycle Times

  • Oh, Chung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.1
    • /
    • pp.129-147
    • /
    • 1990
  • This study is to refer to the optimization problems when the stress and strength follow the time dependent model, considering a decision making process in the design methodology from reliability viewpoint. Reliability of a component can be expressed and computed if the probability distributions for the stress and strength in the time dependent case are known. The factors which determine the parameters of the distributions for stress and strength random variables can be controlled in design problems. This leads to the problem of finding the optimal values of these parameters subject to resources and design constraints. This paper is to present techniques for solving the optimization problems at the design stage like as minimizing the total cost to be spent on controlling the stress and strength parameters for random variables subject to the constraint that the component must have a specified reliability, alternatively, maximizing the component reliability subject to certain constraints on amount of resources available to control the parameters. The derived expressions and computations of reliability in the time dependent case and some optimization models of these cases are discussed. The special structure of these models is exploited to develop the optimization techniques which are illustrated by design examples.

  • PDF

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete

  • Said Ikram Sadat;Fa-xing Ding;Fei Lyu;Naqi Lessani;Xiaoyu Liu;Jian Yang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.595-606
    • /
    • 2023
  • Dune sand (DS) has been widely used as a partial replacement for regular sand in concrete construction. Therefore, investigating its mechanical properties is critical for the analysis and design of structural elements using DS as a construction material. This paper presents a comprehensive investigation of the mechanical properties of DS concrete, considering different replacement ratios and strength grades. Regression analysis is utilized to develop strength prediction models for different mechanical properties of DS concrete. The proposed models exhibit high calculation accuracy, with R2 values of 0.996, 0.991, 0.982, and 0.989 for cube compressive strength, axial compressive strength, splitting tensile strength, and elastic modulus, respectively, and an error within ±20%. Furthermore, a stress-strain relationship specific to DS concrete is established, showing good agreement with experimental results. Additionally, nonlinear finite element analysis is performed on concrete-filled steel tube columns incorporating DS concrete, utilizing the established stress-strain relationship. The analytical and experimental results exhibit good agreement, confirming the validity of the proposed stress-strain relationship for DS concrete. Therefore, the findings presented in this paper provide valuable references for the design and analysis of structures utilizing DS concrete as a construction material.

A Comparative Study for the Fatigue Assessment of fillet Weldments Using Structural Stress and Hot Spot Stress (필릿 용접구조물의 피로해석을 위한 기준응력에 대한 비교 연구 -구조응력 및 핫스팟응력-)

  • Ha Chung-In;Kang Sung-Won;Kim Man-Soo;Sohn Sang-Yong;Heo Joo-Ho;Kim Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.476-483
    • /
    • 2006
  • Fatigue strength assessments with two types of load carrying fillet weldment under out-of-plane bending load have been carried out by using both hot spot stress and structural stress methods. In this study, a derivation for the structural stress method using shell element models is discussed in detail. Finite element analysis using shell element models have been performed for the assessment of fatigue strength. As a result of the fatigue strength evaluation for load carrying transverse fillet weldment, hot spot stress method is found to be consistent with structural stress method and measurement. Hot spot stress, however, estimated for the load carrying longitudinal fillet weldment exhibit large variation with respect to mesh size and element type while the calculated structural stress for the longitudinal fillet weldment is relatively independent of mesh size. On the other hand, drawbacks and doubts associated with applying the structural stress method such as the guidance of virtual node method have been discussed.

A Study on the Strain Rate and Temperature Dependence of Yield Stress of Al-Li Alloy (Al-Li합금의 항복응력에 대한 변형속도 및 온도의존성에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.311-317
    • /
    • 2011
  • The effect of strain rate on the yield stress of an Al-Li alloy has been investigated at temperatures between 77 and 523 K and over the strain rate range from $1.77{\times}10^{-4}s^{-1}$ to $1.77{\times}10^{-2}s^{-1}$. At testing temperatures below 373 K, the yield stress is almost independent of strain rate at any aging stage. At testing temperatures above 373 K, the yield stress increases linearly with the logarithm of strain rate, and the strain rate dependence increases with increasing testing temperature. The yield stresses of under-aged alloy at temperatures between 373 and 473 K at high strain rates are greater than the yield stress at 77 K. For the alloy under-aged or aged nearly to its peak strength, the temperature range within which the positive temperature dependence of yield stress appears expands to the higher temperature side with increasing strain rate. The strain rate dependence of the yield stress is slightly negative at this aging stage. The yield stress of the over-aged alloy decreases monotonically with decreasing strain rate and with increasing testing temperature above 373 K. The modulus normalized yield stress is nearly constant at testing temperatures below 373 K at any strain rate investigated. And, strength depends largely both on the aging conditions and on the testing temperature. The peak positions in strength vs. aging time curves shift to the side of shorter aging time with increasing testing temperature. For the specimens aged nearly to the peak strength, the positive temperature dependence of yield stress is observed in the temperature range. The shift of peak positions in the aging curves are explained in terms of the positive temperature dependence of cutting stress and the negative temperature dependence of by-passing stress.

Distribution of the Equivalent Rectangular Stress Block for High-Strength Polymer Concrete Beams (고강도 폴리머 콘크리트보의 등가직사각형 응력분포)

  • 김관호;연규석;김남길;조규우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.915-920
    • /
    • 2001
  • This study was conducted to analysis the distribution of the rectangular stress block for high-strength polymer concrete beam. C-shaped specimens were produced and tested to compute parameters of the rectangular stress block. They were $\kappa_{1}$ = 0.73, $\kappa_{3}$ = 0.94 and $\gamma$= 0.845, respectively. Experimental value of flexural strength of beam was same to be compared with theoretical value. But there is desirable to need many experimental data in order to exact design of polymer concrete structure.

  • PDF

Nonparametric Estimation of Reliabilityin Strength-Stress Model

  • Jeong, H.S.;Kim, J.J.;Park., B.U.;Lee, H.W.
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.187-194
    • /
    • 1996
  • We treat the problem of estimating reliability R = P[Y < X] in the stress-strength model in which a unit of strength X is subfected to enviromental stress Y./ In this paper several nonparametric approaches to estimation of R are analyzed and compared by simulations.

  • PDF