• Title/Summary/Keyword: Stress- ratio

Search Result 4,014, Processing Time 0.029 seconds

Health Behaviors Before and After the Implementation of a Health Community Organization: Gangwon's Health-Plus Community Program

  • Joon-Hyeong Kim;Nam-Jun Kim;Soo-Hyeong Kim;Woong-Sub Park
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.6
    • /
    • pp.487-494
    • /
    • 2023
  • Objectives: Community organization is a resident-led movement aimed at creating fundamental social changes in the community by resolving its problems through the organized power of its residents. This study evaluated the effectiveness of health community organization (HCO), Gangwon's Health-Plus community program, implemented from 2013 to 2019 on residents' health behaviors. Methods: This study had a before-and-after design using 2011-2019 Korea Community Health Survey data. To compare the 3-year periods before and after HCO implementation, the study targeted areas where the HCO had been implemented for 4 years or longer. Therefore, a total of 4512 individuals from 11 areas with HCO start years from 2013 to 2016 were included. Complex sample multi-logistic regression analysis adjusting for demographic characteristics (sex, age, residential area, income level, education level, and HCO start year) was conducted. Results: HCO implementation was associated with decreased current smoking (adjusted odds ratio [aOR], 0.73; 95% confidence interval [CI], 0.57 to 0.95) and subjective stress recognition (aOR, 0.79; 95% CI, 0.64 to 0.97). Additionally, the HCO was associated with increased walking exercise practice (aOR, 1.39; 95% CI, 1.13 to 1.71), and attempts to control weight (aOR, 1.36; 95% CI, 1.12 to 1.64). No significant negative changes were observed in other health behavior variables. Conclusions: The HCO seems to have contributed to improving community health indicators. In the future, a follow-up study that analyzes only the effectiveness of the HCO through structured quasi-experimental studies will be needed.

Factors Influencing the Intention for Continual Fertility Treatments by the Women Undergoing Assisted Reproductive Technology Procedures: A Cross-Sectional Study (보조생식술 시술 여성의 난임치료 지속 의도 관련 요인: 횡단적 연구)

  • Kim, Miok;Kim, Minkyung;Ban, Minkyung
    • Journal of Korean Academy of Nursing
    • /
    • v.54 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • Purpose: This cross-sectional study aimed to identify factors influencing the intention for continual fertility treatments among women undergoing assisted reproductive technology (ART). Methods: A total of 197 women were recruited through convenience sample from fertility hospitals in Gyeonggi-do and Busan, South Korea. Data were collected using a self-report questionnaire incorporating measures of uncertainty; Depression Anxiety Stress Scales; Fatigue Severity Scale; Coping Scale for Infertility-Women; spousal support; treatment environment; and intention for continual fertility treatment. Descriptive statistics, chi-square tests, t-tests, and logistic regression analysis were conducted using IBM SPSS 26.0. Results: As many as 70.6% of the participants expressed an intention for continual fertility treatments. Logistic regression analysis revealed that factors such as uncertainty (odds ratio [OR] = 0.44, 95% confidence interval [CI] 0.20~0.95), active coping (OR = 4.04, 95% CI 1.11~14.71), treatment environment (OR = 2.77, 95% CI 1.26~6.07), and the duration of marriage (OR = 2.61, 95% CI 1.24~5.49) were significantly related with this intention. Conclusion: These findings underscore the significance of uncertainty management, having proactive coping strategies, having supportive treatment environments, and considering the duration of marriage concerning women's intention for continual fertility treatment in the context of ART. The implications of these results extend to the development of nursing intervention programs aimed at providing crucial support for women undergoing ART and seeking to continue their infertility treatment.

Heat tolerance of goats to increased daily maximum temperature and low salinity of drinking water in tropical humid regions

  • Asep Indra Munawar Ali;Sofia Sandi;Lili Warly;Armina Fariani;Anggriawan Naidilah Tetra Pratama;Abdullah Darussalam
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1130-1139
    • /
    • 2024
  • Objective: The daily maximum temperature and seawater level continuously increase as global warming continues. We examined the adaptability and production performance of heat-stressed goats with a supply of low-saline drinking water. Methods: Twelve Kacang and Kacang Etawah cross goats were exposed to two climatic conditions (control, 25℃ to 33℃, 83% relative humidity [RH], temperature humidity index [THI]: 76 to 86; and hot environment, 26℃ to 39℃, 81% RH, THI: 77 to 94) and two salt levels in drinking water (0% and 0.4% NaCl). The experimental design was a Latin Square (4×4) with four treatments and four periods (28 days each). Results: Temperature of the rectal, skin, and udder, and respiration rate rose, reached a maximum level on the first day of heat exposures, and then recovered. Plasma sodium rose at 0.4% NaCl level, while the hot environment and salinity treatments increased the drinking water to dry matter (DM) intake ratio. Water excretion was elevated in the hot environment but lowered by the increase in salinity. Total lying time increased, whereas change position frequency decreased in the hot condition. Lying and ruminating and total ruminating time increased and explained the enhanced DM digestibility in the hot conditions. Conclusion: The goats exhibited a high level of plasma sodium as salinity increased, and they demonstrated physiological and behavioral alterations while maintaining their production performances under increasing daily maximum temperatures.

Dynamic Behavior of Pier-Type Quay Walls Due to Ground Improvement During Earthquakes (지진 시 지반개량에 따른 잔교식 안벽의 동적 거동)

  • Hyeonsu Yun;Seong-Kyu Yun;Gichun Kang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 2024
  • The 2017 Pohang earthquake caused damage to quay structures due to liquefaction. Liquefaction occurs when effective stress is lost due to an increase in excess pore water pressure during an earthquake. As a result, the damage caused to the pier-type quay wall was identified and the damage caused by liquefaction was analyzed. In addition, in the case of improved ground, damage occurred due to liquefaction of the lower sand layer due to the difference in stiffness from the soft rock layer, so additional numerical analysis was performed assuming non-liquefaction ground. There are several factors that affect the increase in excess pore water pressure ratio, such as the relative density of the ground and the magnitude of the input seismic acceleration. Therefore, this study performed numerical analysis for Cases 1 to 3 by increasing the magnitude of the input acceleration, and in the case of improved ground, damage occurred due to liquefaction of the lower sand layer, so the analysis was performed assuming non-liquefaction ground. As a result, the improved ground requires additional reinforcement when there is liquefied ground below, and the horizontal displacement of the pier-type quay piles was reduced by about two times.

Evaluation of Structural Performance of Unhangak in Suwon Hwaryeongjeon by Three-Dimensional Structural Analysis (3차원 구조해석에 의한 수원 화령전 운한각의 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.197-204
    • /
    • 2024
  • In this paper, the structural performance of Suwon Hwaryeongjeon Unhangak, a representative traditional timber structure in the late Joseon Dynasty, was evaluated. Based on the structure composition of Unhangak, an analysis model was elaborately constructed with Midas Gen, a 3-dimensional structural analysis software. The safety and serviceability of major structural members were evaluated by static analysis, and the dynamic behavior characteristics were evaluated by eigenvalue analysis. Most of the members satisfied the safety and serviceability standards with a margin; however, the bending stress ratio in the oemogdori exceeds the standard by 20.7%, so it is considered that long-term monitoring is needed for this member. The natural period of Unhangak is 1.079 seconds, which is slightly longer than traditional timber buildings of similar scale. In particular, it is analyzed that torsional movement occurred in the secondary mode due to the influence of the rear masonry firewall.

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.

Ultrasensitive Crack-based Mechanosensor Inspired by Spider's Sensory Organ (거미의 감각기관을 모사한 초민감 균열기반 진동압력센서)

  • Suyoun Oh;Tae-il Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Spiders detect even tiny vibrations through their vibrational sensory organs. Leveraging their exceptional vibration sensing abilities, they can detect vibrations caused by prey or predators to plan attacks or perceive threats, utilizing them for survival. This paper introduces a nanoscale crack-based sensor mimicking the spider's sensory organ. Inspired by the slit sensory organ used by spiders to detect vibrations, the sensor with the cracks detects vibrations and pressure with high sensitivity. By controlling the depth of these cracks, they developed a sensor capable of detecting external mechanical signals with remarkable sensitivity. This sensor achieves a gauge factor of 16,000 at 2% strain with an applied tensile stress of 10 N. With high signal-to-noise ratio, it accurately recognizes desired vibrations, as confirmed through various evaluations of external force and biological signals (speech pattern, heart rate, etc.). This underscores the potential of utilizing biomimetic technology for the development of new sensors and their application across diverse industrial fields.

Effects of watching Mukbang and Cookbang videos on adolescents' dietary habits and mental health: cross-sectional study using the 18th Korea Youth Risk Behavior Survey (먹방 및 쿡방 시청이 청소년의 식습관 및 정신 건강에 미치는 영향: 제18차 청소년건강행태 조사를 이용한 단면연구)

  • Seung-Hee Hong
    • Korean Journal of Community Nutrition
    • /
    • v.29 no.2
    • /
    • pp.156-170
    • /
    • 2024
  • Objectives: This study aimed to investigate the association between how often Korean adolescents watch Mukbang and Cookbang videos and their dietary habits. Methods: Data from the 18th Korea Youth Risk Behavior Survey conducted in 2022 was analyzed for this study. The study included 51,850 middle and high school students and assessed various aspects, including demographics, frequency of watching Mukbang and Cookbang videos per week, dietary habits, health behaviors, and mental health factors. Results: Nearly a third (29.3%) of Korean adolescents watched Mukbang and Cookbang videos one to four times a week, while 13.5% watched them more than five times weekly. Females, those with lower academic achievement, and those from lower socioeconomic backgrounds were significantly more likely to be frequent viewers (P < 0.001). Increased viewing frequency was associated with poorer dietary habits. Adolescents who watched more frequently were less likely to eat breakfast and consume fruits and milk, while their consumption of fast food, high-caffeine drinks, sugary drinks, and late-night snacks increased (P < 0.001). Higher viewing frequency correlated with increased feelings of stress, depression, and loneliness (P < 0.001). Logistic regression analysis confirmed these associations. More frequent viewers were significantly less likely to eat breakfast (odds ratio (OR), 0.63; 95% confidence interval (CI), 0.58-0.68), and more likely to consume fast food (OR, 1.85; 95% CI, 1.69-2.02), high-caffeine drinks (OR, 1.43; 95% CI, 1.30-1.56), sugary drinks (OR, 1.54; 95% CI, 1.41-1.67), and late-night snacks (OR, 1.37; 95% CI, 1.25-1.51). Conclusions: Our findings suggest that frequent exposure to Mukbang and Cookbang content is linked to unhealthy dietary habits in adolescents. Educational programs may be necessary to mitigate the potential for these videos to negatively influence dietary choices.

Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed Bourada;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.233-252
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang;M.D. TuMuli Lulios;Chu-Ho Chang;M. Nasir Noor;Jen-Chung Shao;Chien-Liang Chiu;Tsair-Fwu Lee;Renata Wang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.