• Title/Summary/Keyword: Stress intensity factors

Search Result 586, Processing Time 0.027 seconds

Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam (U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수)

  • Seo, Bo Seong;Lee, Kwang Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.513-523
    • /
    • 2016
  • The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and phtoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1~2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used. where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length a(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

Computation of stress Intensity Factors of Hollow Cylinder with Three Dimension Inclination Cracks (3차원 경사크랙을 가진 중공축의 응력확대계수산정)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • In this study, stress intensity factors KI, KII, KIII are existing at the same time to a hollow cylindrical bar of three dimension inclination crack. In order to investigate by experimentally the effect of the inclination angle $\psi$ of crack, artificial inclination cracks in the circumferential direction are put in the surface of a hollow cylindrical bar made by the epoxy-resin. Experimentally, stress analysis methods of stress intensity factors were proposed. But, suitable method are the caustic method and the photoelastic stress freezing method. The mixed mode of KI, and KII, were determined by the photoelastic method of the classical approach method and the FORTRAN language program of the used smallest square method.

  • PDF

Evaluation of Stress Intensity Factors and T-Stress Using a Conservation Integral (보존적분을 이용한 응력강도계수와 T-응력의 계산)

  • 범현규;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.121-126
    • /
    • 1994
  • A mutual integral, which has the conservation property, is applied to the problem of a crack in an isotropic elastic material. The stress intensity factors $K_{I}, K_{II}, K_{III}$ and T-stress for the problem in an infinite medium are easily obtained by using the mutual integral without solving the boundary value problem. The auxiliary solutions necessary in the proposed method are taken from the known asymptotic solutions. This method is amenable to numerical evaluation of the stress intensity factors and T-stress if the crack in a finite medium is considered.

Experimental and numerical analysis of fatigue behaviour for tubular K-joints

  • Shao, Yong-Bo;Cao, Zhen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.639-652
    • /
    • 2005
  • In this paper, a full-scale K-joint specimen was tested to failure under cyclic combined axial and in-plane bending loads. In the fatigue test, the crack developments were monitored step by step using the alternating current potential drop (ACPD) technique. Using Paris' law, stress intensity factor, which is a fracture parameter to be frequently used by many designers to predict the integrity and residual life of tubular joints, can be obtained from experimental test results of the crack growth rate. Furthermore, a scheme of automatic mesh generation for a cracked K-joint is introduced, and numerical analysis of stress intensity factor for the K-joint specimen has then been carried out. In the finite element analysis, J-integral method is used to estimate the stress intensity factors along the crack front. The numerical stress intensity factor results have been validated through comparing them with the experimental results. The comparison shows that the proposed numerical model can produce reasonably accurate stress intensity factor values. The effects of different crack shapes on the stress intensity factors have also been investigated, and it has been found that semi-ellipse is suitable and accurate to be adopted in numerical analysis for the stress intensity factor. Therefore, the proposed model in this paper is reliable to be used for estimating the stress intensity factor values of cracked tubular K-joints for design purposes.

Analysis of Stress Intensity Factors for Interacting Two Growing Cracks (2개의 성장 균열들의 상호작용에 관한 응력확대계수 해석)

  • 박성완
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.47-57
    • /
    • 2000
  • In this study, a fundamental approach to make clear the mechanism of the mutual interference and coalescence of stress fields in the vicinity of two crack tips on the process of their slow growth, using boundary element method. Automatic generation of quadratic discontinuous elements along both of the crack boundaries which can be defined by an arbitrary piece-wise straight geometry. The direction of the crack-extension increment is predicted by the maximum principal stress criterion, corrected to account for the discreteness of the crack extension. Along the computed direction, the crack is extended one increment. Automatic incremental crack-extension analysis with no remeshing, computation of the stress intensity factors by J-integral. Numerical stress intensity factors for two growing cracks in plane-homogeneous regions were determined.

  • PDF

Determination of Stress Intensity Factors for Interface Cracks in Dissimilar Materials Using the RWCIM (상반일 등고선 적분법을 이용한 이종재 접합계면 균열의 응력강도계수 결정)

  • 조상봉;정휘원;김진광
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.180-185
    • /
    • 2000
  • An interface V-notched crack problem can be formulated as a eigenvalue problem. there are the eigenvalues which give stress singularities at the V-notched crack tip. The RWCIM is a method of calculating the eigenvector coefficients associated with eigenvalues for a V-notched crack problem. Obtaining the stress intensity factors for an interface crack in dissimilar materials is examined by the RWCIM. The results of stress intensity factors for an interface crack are compared with those of the displacement extrapolation method by the BEM

  • PDF

Boundary Element Analysis of Thermal Stress Intensity Factors for Cusp Crack in Transient State (천이상태에 있는 커스프균열에 대한 열응력세기계수의 경계요소 해석)

  • 이강용;홍정균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1700-1710
    • /
    • 1992
  • The boundary element method is applied to determine thermal stress intensity factors for a cusp crack in transient state. In the steady temperature field, numerical values of thermal stress intensity factors for a Grifith crack and a symmetric lip cusp crack in a finite body are in good agreement within .+-. 5% with the previous solutions. In transient state, the numerical values of thermal stress intensity factors for the Griffith crack are also in good agreement with the pervious solutions. In both steady and transient states, those for the symmetric lip cusp crack with the crack surface insulated or fixed to the constant temperature are calculates for various effective crack lengths, configuration parameters and uniform heat flow angles. The variations of the thermal boundary conditions of the crack surface have a effect on stress intensity factors. The signs on the values of thermal stress intensity factors can be changed in time variation.

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.

Stress Intensity Factor for Multi-Layered Material Under Polynomial Anti-Symmetric Loading (멱급수 반대칭하중을 받는 다층재 중앙균열의 응력세기계수)

  • 이강용;김성호;박문복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3219-3226
    • /
    • 1994
  • A model is constructed to evaluate the stress intensity factors for a center crack subjected to polynomial anti-symmetric loading in a layered material. A Fredholm integral equation is derived by Fourier integral transform method. The integral equation is numerically analyzed to evaluate the effects of the ratios of shear modulus, Poisson's ratio and crack length to layer thickness as well as the number of layers on the stress intensity factor. The stress intensity factors are approached to constant values as the number of layers increase and decrease as the polynomial power of the loading increase. In case of the E-glass/Epoxy composite, dimensionless stress intensity factor is affected by cracked-resin layer thickness.

Stress Intensity Factors for Elliptical Arc Through Cracks in Mechanical Joints by Virtual Crack Closure Technique

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.182-191
    • /
    • 2002
  • The reliable stress intensity factor analysis is required for fracture mechanics design or safety evaluation of mechanical joints at which cracks often initiate and grow. It has been reported that cracks in mechanical joints usually nucleate as corner cracks at the faying surface of joints and grow as elliptical arc through cracks. In this paper, three dimensional finite element analyses are performed for elliptical arc through cracks in mechanical joints. Thereafter stress intensity factors along elliptical crack front including two surface points are determined by the virtual crack closure technique. Virtual crack closure technique is a method to calculate stress intensity factor using the finite element analysis and can be applied to non-orthogonal mesh. As a result, the effects of clearance on the stress intensity factor are investigated and crack shape are then predicted.