• Title/Summary/Keyword: Stress Parameters

Search Result 3,223, Processing Time 0.036 seconds

DETERMINISTIC EVALUATION OF DELAYED HYDRIDE CRACKING BEHAVIORS IN PHWR PRESSURE TUBES

  • Oh, Young-Jin;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.265-276
    • /
    • 2013
  • Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC). The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.

Experimental and Theoretical Investigations on the Fracture Criteria for Structural Steels (구조물용 강재의 파단기준에 대한 실험 및 이론 연구)

  • Choung, Joon-Mo;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • Six smooth flat tensile specimens and eighteen punch specimens with three different thicknesses were machined from steel of JIS G3131 SPHC. In addition to punch tests, incremental tensile tests were conducted to obtain average true flow stress - logarithmic true strain curves. Through parametric FE simulations for the tensile specimens, material parameters related to GTN model were identified. Using indenters with three kinds of radius, punch tests were carried out to obtain fracture characteristics of punch specimens. Numerical analyses using both fracture models, GTN and $J_2$ plasticity model, gave that the former estimated well the fracture of punch specimen but the latter did not. A new concept for critical size of plate elements was introduced based on minimum relative sharpness between contact structures. Consequently, a new criterion for critical element size was proposed to be less than 20% of minimum relative radius of interacting structures.

A Study on the Failure Behavior of Reinforced Clay (보강점토의 파괴거동에 관한 연구)

  • 유한규
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.159-168
    • /
    • 1997
  • In order to investigate the effect of parameters such as orientation and surface roughness of a reinforcing material as well as the water content of the clay matrix on the stress-strain and failure behavior of reinforced clay, uniaxial compression tests were performed on clay samples reinforced with a steel inclusion Test results showed that the increase or decrease in strength of reinforced clay samples was found to depend on the orientation of a steel inclusion as well as water content of clay samples. The possible weakening mechanism induced by reinforcement in clay samples was related to the development of cracks along the tips of interface between steel inclusion and clay matrix. A theoretical interpretation of failure behavior of reinforced clay was made by using fracture mechanics theory, and the experimental results were compared with the theoretical predictions. The predicted crack propagation direction obtained from fracture criteria for a material containing a closed crack with friction agreed reasonably well with the measured values obtained from tests.

  • PDF

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Non-linear stability analysis of a hybrid barrel vault roof

  • Cai, Jianguo;Zhou, Ya;Xu, Yixiang;Feng, Jian
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.571-586
    • /
    • 2013
  • This paper focuses on the buckling capacity of a hybrid grid shell. The eigenvalue buckling, geometrical non-linear elastic buckling and elasto-plastic buckling analyses of the hybrid structure were carried out. Then the influences of the shape and scale of imperfections on the elasto-plastic buckling loads were discussed. Also, the effects of different structural parameters, such as the rise-to-span ratio, beam section, area and pre-stress of cables and boundary conditions, on the failure load were investigated. Based on the comparison between elastic and elasto-plastic buckling loads, the effect of material non-linearity on the stability of the hybrid barrel vault is found significant. Furthermore, the stability of a hybrid barrel vault is sensitive to the anti-symmetrical distribution of loads. It is also shown that the structures are highly imperfection sensitive which can greatly reduce their failure loads. The results also show that the support conditions pose significant effect on the elasto-plastic buckling load of a perfect hybrid structure.

A Study on the Measurement of Heart Rate Variability using the Modified Laplacian Electrodes (수정된 라플라시안 센서를 이용한 심박변이도 측정에 관한 연구)

  • Lee, Chung-Keun;Shin, Hang-Sik;Kim, Hong-Rae;Lee, Jeong-Whan;Kim, Yong-Jun;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1050-1056
    • /
    • 2009
  • Heart Rate Variability(HRV) is a parameter that represents monitoring variability of time intervals between R-peak in electrocardiography. HRV serves to various applications, such as indices of autonomic functions, prediction of cardiac sudden death, assessment of stress and emotional, etc. However, as measuring R-peak in ECG needs at least 3-electrodes, and it is inconvenient for end users. In this paper, we suggested the modified laplacian electrodes for measuring HRV at one-point, which are producted by MEMS fabrication and have the two circular electrodes on the pad. For optimal position and direction, we performed an experiment that compared with pearson correlation coefficient and the amplitude of signals, between standard lead II and proposed electrodes. We analyzed the HRV parameters, such as standard deviation of the NN interval(SDNN), high frequency(HF), low frequency(LF), LF/HF ratio. The result showed that the average correlation coefficient and amplitude are 0.967 and 0.685 mVpp at the position 2. The coeffiecient correlation between the standard HRV and proposed electrode-HRV is 0.999

Optimum Design of High Voltage Fuse Holder with a Built-in Acoustic Absorber System (흡음장치를 내장한 고전압 퓨즈홀더의 최적설계에 관한 연구)

  • Jin, Yeung-Jun;Lee, Hae-Won;Hwang, Yu-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Noise and vibration are likely to disturb the sensory system of human body leading to psychological stress and thereby property damage. In this research, a cut out switch(COS) with a built-in acoustic absorber along with a COS fuse broken was developed to reduce percussion noise. This new system is based on a design approach that combines existing absorber systems: expansion type, resonator type, and acoustic absorber type silencer The noise performance of the new system was simulated using the $SYSNOISE^{TM}$ software under optimized parameters: the diameter of perforated plate 2 mm, the plate thickness 3 mm, the width of expansion room 25 mm, the impinging vortex room 14 mm, and the noise absorbtion room 10 mm. The results showed that it reduced noise by approximately 41.1 dB compared to the current systems available in the market. Furthermore, it showed reduced noise by approximately 12 dB more than a product with an acoustic absorber of the Fault Tamer(USA).

A Dynamic Analysis on the Latch of Soft Recoil System (연식주퇴 시스템 포신고정 장치의 동적 해석)

  • Woo, Dae-Hyun;Lee, Young-Shin;Kim, Heung-Tae;Jun, Sang-Bae;Lee, Kyu-Sub;Kang, Kuk-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2012
  • In the soft recoil system, the recoiling parts are initially accelerated to the forward direction. These parts are returned to original position by the firing with intial acceleration speed. The latch of the soft recoil system keeps the high impact load when the recoil parts were recuperated to the forward direction. In this study, the latch of soft recoil system using the ADAMS program was analyzed. The optimal operation parameters were found that max. angle and expansion length of latch was $50^{\circ}$, 180 mm respectively. Dynamic structural analyses of model cases were performed using finite element model. The max. stress and deflection of latch was 230 MPa and 0.45 mm respectively.

STOCHASTIC CHARACTERISTICS OF FATIGUE CRACK GROWTH RESISTANCE OF SM45C STEEL

  • Park, U.H.;Lee, H.W.;Kim, S.J.;Lee, C.R.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.623-628
    • /
    • 2007
  • Reliability analysis based on fracture mechanics requires knowledge of the on statistical parameters m and C in the fatigue crack growth law $da/dN=C({\Delta}K)^m$. The purpose of the present study is to investigate if it is possible to explain the change of parameter m by the fluctuation of C only. In this study, we apply the Paris-Erdogan law treating the parameter C as random and the parameter m as constant. Fluctuations in crack growth rate are assumed to be dependent only on C. The material resistance to fatigue crack growth(Z=1/C) is treated as a spatially random process, that varies along the crack path. The theoretical crack growth rates at various stress intensity factors are discussed. Additionally, the results of constant ${\Delta}K$ fatigue crack growth tests are reported for the structural steel, SM45C. The experimental data have been analyzed to determine the probability distribution of fatigue crack growth resistanc.

Analysis on Flexural Behavior of Hollow Prestressed Concrete Filled Steel Tube Piles (프리스트레스를 받는 중공형 콘크리트 충전 강관말뚝의 휨거동 해석)

  • Chung, Heung-Jin;Paik, Kyu-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • A nonlinear finite element analysis was conducted in order to examine the moment capacity and flexural behaviour of hollow prestressed concrete filled steel tube(HCFT) piles which compose hollow PHC piles inside thin wall steel tubes. The parameters investigated in this study were various contact conditions between concrete and steel tube, thickness of concrete tube and various PC strands. A simple method is proposed to determine the ultimate flexural strength based on plastic stress distribution method. In order to verify the proposed method, calculated moment capacity of various HCFT piles are compared with the experiment and numerical analysis results.