• Title/Summary/Keyword: Stress Method

Search Result 10,658, Processing Time 0.038 seconds

The Correlation between the Ultrasonic Backscattered Energy and the Applied Stress in Al material (Al재료(材料)에서 Ultrasonic Backscattered Energy와 Stress와의 상호관계(相互關係))

  • Park, J.H.;Park, C.S.;Lim, H.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.1
    • /
    • pp.32-41
    • /
    • 1987
  • As a new device of stress monitoring method, ultrasonic backscattering method has been used to aluminium samples with various grain sizes at rayleigh critical angle in order to observe the relationships between applied stress and ultrasonic backscattered energy. It was found that the ultrasonic backscattered energy was observed to decrease as the grain size increased at the given applied stress. At the same grain size, the ule ultrasonic backscattered energy increased with increasing the applies stress. Through this study, we provided some possibility to evaluate stresses in materials under loads nondestructively, and this method is expected to be used as a new stress monitoring device.

  • PDF

A Numerical Analysis Approach for Design of Cable Dome Structures (케이블 돔 구조물 설계를 위한 수치해석 방법)

  • Kim, Jae-Yeol;Jang, Dong-Woo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.89-94
    • /
    • 2008
  • This paper deals with the method of self-equilibrium stress mode analysis of cable dome structures. From the point of view of analysis, cable dome structure is a kind of unstable truss structure which is stabilized by means of introduction of prestressing. The prestress must be introduced according to a specific proportion among different structural member and it is determined by an analysis called self-equilibrium stress mode analysis. The mathematical equation involved in the self-equilibrium stress mode analysis is a system of linear equations which can be solved numerically by adopting the concept of Moore-Penrose generalized inverse. The calculation of the generalized inverse is carried out by rank factorization method. This method involves a parameter called epsilon which plays a critical role in self-equilibrium stress mode analysis. It is thus of interest to investigate the range of epsilon which produces consistent solution during the analysis of self-equilibrium stress mode.

  • PDF

Stress Analysis of MWK Composite Laminate with Multi-pin Loaded Holes (다중 핀 하중을 받는 MWK 복합재료의 응력 해석)

  • 조민규;김병구;전흥재;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.74-78
    • /
    • 2003
  • Stress analysis was conducted with finite element method to study the stress distributions in both single-pin and multi-pin loaded composite laminates. The various parameters involved in the design of the joint method were considered. The stress distributions in the vicinity of the holes were predicted considering the effects of various parameters such as the lay-ups, number of pins, number of rows, row spacing, and hole patterns. The results show that the performance of joint is greatly affected by these parameters.

  • PDF

Determination of Stress Intensity Factors for Bimaterial Interface Rigid Line Inclusions by Boundary Element Method (경계요소법을 이용한 접합재료 경계면의 직선균열형상의 강체 함유물에 대한 응력세기계수 결정)

  • Lee, Kang-Yong;Kwak, Sung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.176-181
    • /
    • 2000
  • Stress intensity factors for a rigid line inclusion tying along a bimaterial interface are calculated by the boundary element method with the multiregion and double-Point techniques. The formula between the stress intensity factors and the inclusion surface stresses are derived. The numerical values of the stress intensity factors for the bimaterial interface rigid line inclusion in the infinite body are proved to be in good agreement within 3% when compared with the previous exact solutions. In the finite bimaterial systems, the stress intensity factors for the center and edge rigid line inclusions at interface are computed with the variation of the rigid line inclusion length and the shear modulus ratio under the biaxial and uniaxial loading conditions.

  • PDF

Fatigue Life Evaluation on Compressive & Tensional Residual Stress Induced Materials and Residual Stress Measurement using Hole Drilling Method (HDM을 이용한 잔류응력측정과 압축·인장 잔류응력이 인가된 재료의 피로수명평가)

  • Baek, Seung Yeb
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.43-48
    • /
    • 2013
  • This paper Investigated the characteristics of residual stress in weld is composed of typical specimens, are investigated by using three dimensional thermal elasto-plastic FEM analysis. Numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. Using the stress amplitude (${\sigma}a$)R at the hot spot point of gas weld, the relations obtained as the fatigue test results for typical specimens having various dimensions and shapes were systematically rearranged to obtain the (${\sigma}a$)R-Nf relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (${\sigma}a$)R.

Comparison of different estimators of P(Y

  • Hassan, Marwa KH.
    • International Journal of Reliability and Applications
    • /
    • v.18 no.2
    • /
    • pp.83-98
    • /
    • 2017
  • Stress-strength reliability problems arise frequently in applied statistics and related fields. In the context of reliability, the stress-strength model describes the life of a component, which has a random strength X and is subjected to random stress Y. The component fails at the instant that the stress applied to it exceeds the strength and the component will function satisfactorily whenever X > Y. The problem of estimation the reliability parameter in a stress-strength model R = P[Y < X], when X and Y are two independent two-parameter Lindley random variables is considered in this paper. The maximum likelihood estimator (MLE) and Bayes estimator of R are obtained. Also, different confidence intervals of R are obtained. Simulation study is performed to compare the different proposed estimation methods. Example in real data is used as practical application of the proposed procedure.

  • PDF

A Study on the Thermal Stress Analysis of Thermally Sprayed Ceramic Coating (세라믹 용사시의 열응력해석에 관한 연구)

  • 정동원;김귀식;오맹종;조종래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.227-232
    • /
    • 1998
  • The purpose of this study is to develop a numerical method for analyzing the transient heat transfer and evaluating the residual stress. The analysis of heat transfer and thermal stress are carried out by three-dimensional finite element method. Thermal spraying is one of the most common surface coating techniques to be used for many applications. In order to improve the mechanical properties of flame-sprayed ceramic coating layer, the accurate and effective analysis of heat transfer and thermal stress is essentially required.

  • PDF

Stress evaluation method of reinforced wall-thinned Class 2/3 nuclear pipes for structural integrity assessment

  • Jae-Yoon Kim;Je-Hoon Jang;Jin-Ha Hwang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1320-1329
    • /
    • 2024
  • When wall-thinning occurs in nuclear Class 2 and 3 pipes, reinforcement is typically applied rather than replacement. To analyze the structural integrity of reinforced wall-thinned pipe, stress analysis results using full 3-D FE analysis are not compatible to the design code equation, ASME BPVC Sec. III NC/ND-3650. Therefore, the efficient stress evaluation method for the reinforced wall-thinned pipe, compatible to the design code equation, needs to be developed. In this paper, stress evaluation methods for the reinforced wall-thinned pipe are proposed using the equivalent straight pipe concept. Furthermore, for fatigue analysis of the reinforced wall-thinned pipe, the stress intensification factor of reinforced wall-thinned pipe is presented using the structural stress method given in ASME BPVC Sec. VIII Div.2.

Numerical Analysis of Stress Field around Crack Tip under Impact Load (충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구)

  • Hwang, Gap-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

Hot spot stress approach for Tsing Ma Bridge fatigue evaluation under traffic using finite element method

  • Chan, T.H.T.;Zhou, T.Q.;Li, Z.X.;Guo, L.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.261-279
    • /
    • 2005
  • The hot spot stress approach is usually adopted in the fatigue design and analysis of tubular welded joints. To apply the hot spot stress approach for fatigue evaluation of long span suspension bridges, the FEM is used to determine the hot spot stress of critical fatigue location. Using the local finite element models of the Tsing Ma Bridge, typical joints are developed and the stress concentration factors are determined. As a case for study, the calculated stress concentration factor is combined with the nominal representative stress block cycle to obtain the representative hot spot stress range cycle block under traffic loading from online health monitoring system. A comparison is made between the nominal stress approach and the hot spot stress approach for fatigue life evaluation of the Tsing Ma Bridge. The comparison result shows that the nominal stress approach cannot consider the most critical stress of the fatigue damage location and the hot spot stress approach is more appropriate for fatigue evaluation.