• Title/Summary/Keyword: Stress Detection

Search Result 389, Processing Time 0.025 seconds

Quantitative Label-free Biodetection of Acute Disease Related Proteins Based on Nanomechanical Dynamic Microcantilevers

  • Hwang, Kyo-Seon;Cha, Byung-Hak;Kim, Sang-Kyung;Park, Jung-Ho;Kim, Tae-Song
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.151-160
    • /
    • 2007
  • We report the label-free biomolecules detection based on nanomechanical micro cantilevers operated in dynamic mode for detection of two marker proteins (myoglobin and creatin kinase-MB (CK-MB)) of acute myocardical infarctions. When the specific binding between the antigen and its antibody occurred on the fuctionalized microcantilever surface, mechanical response (i.e. resonant frequency) of microcantilevers was changed in lower frequency range. We performed the label-free biomolecules detection of myoglobin and CK-MB antigen in the low concentration (clinical threshold concentration range) as much as 1 ng/ml from measuring the dynamic response change of micro cantilevers caused by the intermolecular force. Moreover, we estimate the surface stress on the dynamic microcantilevers generated by specific antibody-antigen binding. It is suggested that our dynamic microcantilevers may enable one to use the sensitive label-free biomolecules detection for application to the disease diagnosis system based on mechanical immuno-sensor.

Stress Measurement of films using surface micromachined test structures (표면 미세 가공된 구조체를 이용한 박막의 응력 측정)

  • 이창승;정회환;노광수;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.721-725
    • /
    • 1996
  • The microfabricated test structures were used in order to evaluate the stress characteristics in films. The test structures were fabricated using surface micromachining technique, including HF vapor phase etching as an effective release method. The fabricated structures were micro strain gauge, cantilever-type vernier gauge and bridge for stress measurement, and cantilever for stress gradient measurement. The strain was measures by observing the deformation of the structures occurred after release etching and the amount of deformation can be detected by micro vernier gauge, which has gauge resolution of 0.2${\mu}{\textrm}{m}$. The detection principles and the degree of precision for the measured strain were also discussed. The characteristics of residual stress in LPCVD polysilicon films were studied using these test structures. The stress gradient due to the stress variation through the film thickness was calculated by measuring the deflection at the cantilever free end.

  • PDF

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-Wave Technique in the Longitudinal Direction (수축방향(樹軸方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Kuen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 1996
  • This study was performed to investigate the feasibility of using sonic stress-wave technique in the longitudinal direction for the assessment of incipient decay of radiata pine wood. Decayed bending specimens by Tyromyces palustris and Gloeophyllum trabeum for varoious periods were tested nondestructively using stress-wave technique in the longitudinal direction and destructively. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, stress-wave elasticity) measured by stress-wave technique in the longitudinal direction and their percent reduction due to decay.

  • PDF

Human Stress Monitoring through Measurement of Physiological Signals (생체 신호 측정을 통한 스트레스 모니터링)

  • Natsagdorj, Ulziibayar;Moon, Kwang-Seok;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • As the human population increases in the world, the ratio of health doctors is rapidly decreasing. Therefore, it is an urgent need to create new technologies to monitor the physical and mental health of people during their daily life. In particular, negative mental states like depression and anxiety are big problems in modern societies. Usually this happens due to stressful situations during everyday activities including work. This paper presents a machine learning approach to reliably estimating the level of human mental stress using wearable physiological sensors. And also, this paper presents an Android- and Arduino-based stress monitoring and relief system.

Review on CNT-based Electrode Materials for Electrochemical Sensing of Ascorbic Acid

  • P Mary Rajaitha;Runia Jana;Sugato Hajra;Swati Panda;Hoe Joon Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.131-139
    • /
    • 2023
  • Ascorbic acid plays a crucial role in the regulation of neurotransmitters and enzymes in the central nervous system. Maintaining an optimal level of ascorbic acid, which is between 0.6-2 mg/dL, is vital for preventing oxidative stress and associated health conditions, such as cancer, diabetes, and liver disease. Therefore, the detection of ascorbic acid is of the utmost importance. Electrochemical sensing has gained significant attention among the various detection methods, owing to its simplicity, speed, affordability, high selectivity, and real-time analysis capabilities. However, conventional electrodes have poor signal response, which has led to the development of modified electrodes with better signal response and selectivity. Carbon nanotubes (CNTs) and their composites have emerged as promising materials for the electrochemical detection of ascorbic acid. CNTs possess unique mechanical, electrical, and chemical properties that depend on their structure, and their large surface area and excellent electron transport properties make them ideal candidates for electrochemical sensing. Recently, various CNT composites with different materials and nanoparticles have been studied to enhance the electrochemical detection of ascorbic acid. Therefore, this review aims to highlight the significance of CNTs and their composites for improving the sensitivity and selectivity of ascorbic acid detection. Specifically, it focuses on the use of CNTs and their composites in electrochemical sensing to revolutionize the detection of ascorbic acid and contribute to the prevention of oxidative stress-related health conditions. The potential benefits of this technology make it a promising area for future research and development.

Evaluation of Fracture Detection Function for the Concrete by Self-Diagnosis CPGFRP (자기진단 CPGFRP의 파괴예측기능 평가를 위한 콘크리트 적용실험)

  • Choi, Hyun-Soo;Park, Jin-Sub;Jnng, Min-Soo;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.27-31
    • /
    • 2003
  • To maintain serviceability of concrete structure more than proper it is necessary not only predict service life through periodical monitor but also need monitoring system to recognize optimal time and method for repair. Recently, CPGFRP, replacing some GFRP with CF, is developed and used for monitoring concrete fraction. But dramatic resistance change of CPGFRP is showed below 0.5% strain and it is not small strain in terms of monitoring micro crack in concrete. In other word, monitoring with CF is not suitable in low stress hut hight stress. In this study, we accessed applicable possibility and reliability of CPGFRP composite as monitoring sense that is proved very sensitive to stress through domestic and oversea previous study. CPGFRP composite plays a role in specimen like steel and increases flexural strength. CPGFRP composite shows resistance increasement in micro crack. In particular, CPUFRP is more sensitive than strangage in low stress. Resistance change ratio curve is very similar to strain curve so sensitivity and reliability is very excellent to monitor concrete fracture.

  • PDF

Evaluation of Fracture Detection Function for the Concrete by Self-Diagnosis CPGFRP (자기진단 CPGFRP의 파괴예측기능 평가를 위한 콘크리트 적용실험)

  • 최현수;박진섭;정민수;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.27-31
    • /
    • 2003
  • To maintain serviceability of concrete structure more than proper it is necessary not only predict service life through periodical monitor but also need monitoring system to recognize optimal time and method for repair. Recently, CPGFRP, replacing some GFRP with CF, is developed and used for monitoring concrete fraction. But dramatic resistance change of CPGFRP is showed below 0.5% strain and it is not small strain in terms of monitoring micro crack in concrete. In other word, monitoring with CF is not suitable in low stress but hight stress. In this study, we accessed applicable possibility and reliability of CPGFRP composite as monitoring sense that is proved very sensitive to stress through domestic and oversea previous study. CPGFRP composite plays a role in specimen like steel and increases flexural strength. CPGFRP composite shows resistance increasement in micro crack. In particular, CPGFRP is more sensitive than strangage in low stress. Resistance change ratio curve is very similar to strain curve so sensitivity and reliability is very excellent to monitor concrete fracture.

  • PDF

Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement

  • Kim, Ji-Min;Lee, Jun;Sohn, Hoon
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.129-139
    • /
    • 2018
  • Post-tensioning (PT) tendons are commonly used for the assembly of modularized concrete members, and tension is applied to the tendons during construction to facilitate the integrated behavior of the members. However, the tension in a PT tendon decreases over time due to steel corrosion and concrete creep, and consequently, the stress on the anchor head that secures the PT tendon also diminishes. This study proposes an automatic detection system to identify tension reduction in a PT tendon using pulsed-eddy-current (PEC) measurement. An eddy-current sensor is installed on the surface of the steel anchor head. The sensor creates a pulsed excitation to the driving coil and measures the resulting PEC response using the pick-up coil. The basic premise is that the tension reduction of a PT tendon results in stress reduction on the anchor head surface and a change in the PEC intensity measured by the pick-up coil. Thus, PEC measurement is used to detect the reduction of the anchor head stress and consequently the reduction of the PT tendon force below a certain threshold value. The advantages of the proposed PEC-based tension-reduction-detection (PTRD) system are (1) a low-cost (< $ 30), low-power (< 2 Watts) sensor, (2) a short inspection time (< 10 seconds), (3) high reliability and (4) the potential for embedded sensing. A 3.3 m long full-scale monostrand PT tendon was used to evaluate the performance of the proposed PTRD system. The PT tendon was tensioned to 180 kN using a custom universal tensile machine, and the tension was decreased to 0 kN at 20 kN intervals. At each tension, the PEC responses were measured, and tension reduction was successfully detected.

DETECTION OF ODSCC IN SG TUBES DEPENDING ON THE SIZE OF THE CRACK AND ON THE PRESENCE OF SLUDGE DEPOSITS

  • Chung, Hansub;Kim, Hong-Deok;Kang, Yong-Seok;Lee, Jae-Gon;Nam, Minwoo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.869-874
    • /
    • 2014
  • It was discovered in a Korean PWR that an extensive number of very short and shallow cracks in the SG tubes were undetectable by eddy current in-service-inspection because of the masking effect of sludge deposits. Axial stress corrosion cracks at the outside diameter of the steam generator tubes near the line contacts with the tube support plates are the major concern among the six identical Korean nuclear power plants having CE-type steam generators with Alloy 600 high temperature mill annealed tubes, HU3&4 and HB3~6. The tubes in HB3&4 have a less susceptible microstructure so that the onset of ODSCC was substantially delayed compared to HU3&4 whose tubes are most susceptible to ODSCC among the six units. The numbers of cracks detected by the eddy current inspection jumped drastically after the steam generators of HB4 were chemically cleaned. The purpose of the chemical cleaning was to mitigate stress corrosion cracking by removing the heavy sludge deposit, since a corrosive environment is formed in the occluded region under the sludge deposit. SGCC also enhances the detection capability of the eddy current inspection at the same time. Measurement of the size of each crack using the motorized rotating pancake coil probe indicated that the cracks in HB4 were shorter and substantially shallower than the cracks in HU3&4. It is believed that the cracks were shorter and shallower because the microstructure of the tubes in HB4 is less susceptible to ODSCC. It was readily understood from the size distribution of the cracks and the quantitative information available on the probability of detection that most cracks in HB4 had been undetected until the steam generators were chemically cleaned.

Possibility for Early Detection on Crop Water Stress Using Plural Vegetation Indices (작물 가뭄스트레스 조기탐지 가능성 타진을 위한 서로 다른 종류의 식생지수 활용)

  • Moon, Hyun-Dong;Jo, Euni;Cho, Yuna;Kim, Hyunki;Kim, Bo-kyeong;Lee, Yuhyeon;Jeong, Hoejeong;Kwon, Dongwon;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1573-1579
    • /
    • 2022
  • The irrigation schedule system using early detection of crop water stress is required to maintain crop production and save water resource. However, because previous studies focused on the crop under stress dominant condition, the crop physiological properties, which can be measured by remote sensing technique, on early crop water stress condition are not well known. In this study, the canopy temperature, MERIS Terrestrial Chlorophyll Index (MTCI), and Chlorophyll/Carotenoid Index (CCI) are observed on the soybeans given the early water stress using thermal imaging camera and hyperspectral camera. The increased canopy temperature and decreased MTCI are consist with the previous studies which are for the crop of stress dominant-sign. However, the CCI was increased contrary to expectation because it may faster the reduction of carotenoid than chlorophyll in early stage. These behaviors will be useful to not only develop the irrigation system but also using the early detection of crop stress.