• 제목/요약/키워드: Stress Components

검색결과 1,738건 처리시간 0.032초

Comprehensive Residual Stress Distributions in a Range of Plate and Pipe Components

  • Lee Hyeong-Yeon;Kim Jong-Bum;Lee Jae-Han;Nikbin Kamran M.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.335-344
    • /
    • 2006
  • A comprehensive review of through thickness transverse residual stress distributions in a range of as-welded and mechanically bent components made up of a range of steels has been carried out, and simplified generic transverse residual stress profiles for a plate and pipe components have been proposed. The geometries consisted of welded pipe butt joints, T-plate joints, tubular T-joints, tubular Y-joints and a pipe on plate joints as well as cold bent tubes and pipes. The collected data covered a range of engineering steels including ferritic, austenitic, C-Mn and Cr-Mo steels. Measured residual stress data, normalised with respect to the parent material yield stress, has shown a good linear correlation versus the normalised depth of the region containing the residual stress resulting from the welding or cold-bending process. The proposed simplified generic residual stress profiles based on the mean statistical linear fit of all the data provides a reasonably conservative prediction of the stress intensity factors. Whereas the profiles for the assessment procedures are fixed and case specific, the simple bilinear profiles for the residual stresses obtained by shifting the mean and bending stress from the mean regression line have been proposed and validated.

Effect of two temperature and energy dissipation in an axisymmetric modified couple stress isotropic thermoelastic solid

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • 제11권3호
    • /
    • pp.199-215
    • /
    • 2022
  • The present paper deals with the axisymmetric deformation in homogeneousisotropic thermoelastic solid with two temperatures, with and without energy dissipation using modified couple stresstheory. The effect of energy dissipation and two temperature isstudied due to the concentrated normalforce, normalforce overthe circularregion, thermal pointsource and thermalsource over the circular region. The Laplace and Hankel transform techniques have been used to find the solution to the problem. The displacement components, conductive temperature distribution, stress components and couple stress are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. Effects of two temperature and energy dissipation on the conductive temperature,stress components and couple stress are depicted graphically.

Mixed finite element model for laminated composite beams

  • Desai, Y.M.;Ramtekkar, G.S.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.261-276
    • /
    • 2002
  • A novel, 6-node, two-dimensional mixed finite element (FE) model has been developed to analyze laminated composite beams by using the minimum potential energy principle. The model has been formulated by considering four degrees of freedom (two displacement components u, w and two transverse stress components ${\sigma}_z$, $\tau_{xz}$) per node. The transverse stress components have been invoked as nodal degrees of freedom by using the fundamental elasticity equations. Thus, the present mixed finite element model not only ensures the continuity of transverse stress and displacement fields through the thickness of the laminated beams but also maintains the fundamental elasticity relationship between the components of stress, strain and displacement fields throughout the elastic continuum. This is an important feature of the present formulation, which has not been observed in various mixed formulations available in the literature. Results obtained from the model have been shown to be in excellent agreement with the elasticity solutions for thin as well as thick laminated composite beams. A few results for a cross-ply beam under fixed support conditions are also presented.

혼합유한요소모델을 이용한 두꺼운 복합적층판의 불규칙 진동해석(1)-이론적 고찰 (Random Vibration Analysis of Thick Composite Laminated Plate Using Mixed Finite Element Model (1))

  • 석근영;강주원
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.190-196
    • /
    • 2004
  • Thick composite laminated plates is considered in 3D finite-element. To consider continuity of transverse stresses and displacement field, mixed finite-element has been developed by using layerwise theory and the minimum potential energy principle. Mixed finite-element has been enforced through the thick direction, Z, of a laminated plate by considering six degree-of-freedoms per node. Six degree-of-freedoms are three displacement components in the coordinate axes directions and three transverse stress components ${\sigma}_z,\;{\tau}_{xz},\;{\tau}_{yz}$. The model maintain the fundamental elasticity relations that are stress-strain relation and displacement-strain relation, because the transverse stress components invoked as nodal degrees of freedom by using the fundamental elasticity relationship between th components of stress and displacement. Random vibration analysis of the model is performed by computing consistent mass matrix and computing covariance in frequency domain technique.

  • PDF

항공기용 알루미늄 판재의 냉간가공 특성 연구 (A Study on Cold Working Properties of Aluminum Plates for Aircraft Structure)

  • 이동석;이준현
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.165-171
    • /
    • 2003
  • In a structure, many components are fastened together using bolts, nuts and rivets through drilled holes. Not only do these fastened joints enable easy assembly and dismantling, they are also able to transfer as well as to distribute loads applied onto the structures. The major drawback of such connections, however, is that the fatigue life of the components is reduced by the presence of the hole since the stress concentration around the hole is increased. In addition, the hole drilling process itself may introduce defects or roughness at the surfaces of the hole that may cause further decrease in fatigue performance of the components. For applications where fatigue loadings are important, one way to compensate the decrease in fatigue life of the components is by introduction of beneficial compressive residual stress around the hole using cold working. The material used for this research were A12024-T351 and A17050-T7451 using the primary member of aircraft. We present, In this paper, the characteristics of coldworking by evaluation of the hole expansion ratio, residual stress distribution, and fatigue properties.

원자로 직접주입노즐의 피로평가에 미치는 응력집중계수의 영향 (Effect of Stress Concentration Factors on the Fatigue Evaluation of the Direct Vessel Injection Nozzle)

  • 김태순;이재곤
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.53-59
    • /
    • 2010
  • A fatigue damage caused by cyclic load is considered as one of the important failure mechanisms that threaten the integrity of structures and components in a nuclear power plant. In ASME code section III NB, the fatigue analysis procedure and standard S-N curves for the class 1 components are described and these criteria should be met at the design step of components. As the current ASME S-N curves are based on the very conservative assumptions such as a local stress concentration effect, immoderate transient frequencies and a constant Young's modulus, however, they can not precisely address the fatigue behavior of components. In order to find out the technical solution for these problems, a number of researches and discussion have been carried out continuously at home and abroad over the decades. In this study, detailed fatigue analyses for DVI nozzle with various mesh density of finite elements were performed to evaluate effect of stress concentration factors on the fatigue analysis procedure and the excessive conservatism of stress concentration factors are confirmed through the analysis results.

Relationships between Metabolic Syndrome Component and Depression, Stress

  • Shim, Moon-Jung;Kang, Yun-Jung
    • 대한임상검사과학회지
    • /
    • 제46권2호
    • /
    • pp.68-74
    • /
    • 2014
  • The purpose of this study is to provide an academic basis regarding the necessity of managing depression and stress among metabolic syndrome patients by understanding 5 components of metabolic syndrome, perceived stress, and degree of depression, and by investigating their association using the national nutrition survey reference. This study was conducted by using mental health surveys and health screening test data of the 5th (2010~2012) primitive data of the national health and nutrition survey. A total of 19,599 respondents over 19 years of age were selected for the final analysis. The level of depression and stress was set as the dependent variable to identify its connection with 5 components of the metabolic syndrome. For the stress recognition, none of the metabolic syndrome components showed a significant correlation. For experiencing the depression symptom, the fasting glucose among the factors showed a significant correlation (p<0.05) among the metabolic syndrome factors. When it falls within the criteria of fasting glucose of metabolic syndrome, it has a great probability of falling under the group who experienced greater depression symptoms. As a result of the analysis by controlling cardiovascular and cerebrovascular disease which is tightly related with metabolic syndrome and depression, this study observed that glucose out of 5 metabolic syndrome components is related with depression.

Al7075-T6의 압축잔류응력 및 피로 수명에 미치는 재피닝의 효과 (Effects of Re-Peening on the Compressive Residual Stress and Fatigue Life of Al7075-T6)

  • 오성훈;이용성;정성균
    • 한국생산제조학회지
    • /
    • 제25권4호
    • /
    • pp.253-257
    • /
    • 2016
  • The effects of re-peening on the compressive residual stress and fatigue life of Al7075-T6 were investigated. The compressive residual stress induced on the surface of components by shot peening is known to increase the fatigue life. However, the fatigue load relaxes the compressive residual stress of components. Re-peening is a technique to again induce the relaxed compressive residual stress and increase the total fatigue life of components. In this study, the re-peening process was applied to fatigue-loaded specimens. The compressive residual stress and fatigue life were examined for re-peened specimens with fatigue ratios of 30%, 50%, and 70%. The results showed that the compressive residual stress of the specimens was relaxed under the fatigue load. The re-peening process significantly increases the compressive residual stress and total fatigue life.

Effect of two temperature on isotropic modified couple stress thermoelastic medium with and without energy dissipation

  • Lata, Parveen;Kaur, Harpreet
    • Geomechanics and Engineering
    • /
    • 제21권5호
    • /
    • pp.461-469
    • /
    • 2020
  • The objective of this paper is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic medium with and without energy dissipation and with two temperatures due to thermal source and mechanical force. Laplace and Fourier transform techniques are applied to obtain the solutions of the governing equations. The displacement components, stress components, conductive temperature and couple stress are obtained in the transformed domain. Isothermal boundary and insulated boundary conditions are used to investigate the problem.The effect of two temperature and GN theory of type-II and type-III has been depicted graphically on the various components. Numerical inversion technique has been used to obtain the solutions in the physical domain. Some special cases of interest are also deduced.

원전 기기 용접 잔류응력 평가 연구 고찰 (Investigation on the Studies for Welding Residual Stresses in Nuclear Components)

  • 김종성
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.30-40
    • /
    • 2016
  • The paper investigates the previous studies about welding residual stresses in nuclear components. First, various residual stress measurement methods are reviewed in applicability. Second a finite element welding residual stress analysis technique, which was developed from the viewpoint of FFS (Fitness-For-Service) assessment, is explained. Third, characteristics of the welding residual stresses on J-groove welds and butt welds were presented via investigating the previous studies. Last, engineering formulae for residual stresses in the FFS assessment codes such as R6 and API 579/ASME FFS-1 Code is summarized.