• 제목/요약/키워드: Strength-to-density ratio

Search Result 470, Processing Time 0.032 seconds

Properties of Foamed Concrete According to Concentrations of Synthetic Type Foaming Agents (합성 기포제 희석 농도에 따른 기포콘크리트의 특성)

  • Choi, Ji-Ho;Shin, Sang-Chul;Park, Hyo-Jin;Kim, Ji-Ho;Jeong, Ji-Yong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.123-125
    • /
    • 2011
  • Pre-foaming that has been used in this study is using to control and guarantee quality, but the optimum mix proportion and regulation are not definite. Therefore, this study investigated properties of foamed concrete according to concentrations of foaming agent to improve usability of foamed concrete. Synthetic foaming agent such as AES(Alkyl Ether Sulfate) and AOS(Alpha Olefin Sulfonate) are used to make foam with 1, 3, and 5% concentrations. We found that the flow of foam concrete increases when foam concentration is high and AES is more flowable than AOS. Density and compressive strength increase when foam concentration is low.

  • PDF

The Compaction and Compressive Strength Properties of CSG Material Reinforced Polypropylene Fiber (폴리프로필렌 섬유 보강 CSG 재료의 다짐 및 압축강도 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.73-81
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the compaction and compressive strength properties of stress-strain, elastic modulus and fracture mode CSG materials reinforced polypropylene fiber. Polypropylene fiber widely used for concrete reinforcement is randomly distributed into cemented sand. The two types of polypropylene fiber (monofillament and fibrillated fiber) were used and fiber fraction ratio was 0, 0.2 %, 0.4 %, 0.6 % and 0.8 % by the weight of total dry soil. The effect of fiber fraction ratio and fiber shape on compaction and compressive strength were investigated. The optimum moisture contents (OMC) of CSG material increased as fiber fraction increased and the dry density of CSG material decreased as fiber fraction. Also, the maximum increase in compressive strength was obtained at 0.4 % content of monofillament and fibrillated fiber. CSG material behaviour was controlled not only by fiber fraction but also fiber distribution, fiber shape and fiber type.

A Study on Property Change with Mixing Ratio in NBR/PVC Composites

  • Li, Xiang Xu;Jeong, Hyung Seok;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.48-51
    • /
    • 2018
  • 10, 20, 30, and 40% of polyvinyl chloride (PVC) were added to nitrile butadiene rubber (NBR) to modify the latter. The NBR/PVC composites containing pure NBR were synthesized to investigate properties, such as crosslinking density, hardness, tensile strength, abrasion resistance, heat resistance, solvent resistance, and filler dispersion. The experimental result revealed a decrease in crosslinking density and heat resistance with increase in the PVC content. In contrast, addition of PVC to NBR resulted in enhancement of hardness, tensile strength, solvent resistance, and filler dispersion.

A Study on the Strength Irrelevance of Hypervelocity Penetration (초고속 관통의 강도 무관성에 관한 연구)

  • Kang, Youngku
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.199-203
    • /
    • 2019
  • The penetration depth of a hypervelocity jet exceeding 4 km/s is described by the density ratio of the jet and the target. In the case of the same density, the difference in strength between the targets does not affect the penetration depth difference. This study focuses on the "strength irrelevance" of such a hypervelocity jet. For this purpose, the change of crater pressure caused by shaped charge jet(SCJ) was calculated by finite element analysis and the possibility of polymorphic phase transition of steel material was investigated. Hypervelocity jets were found to cause polymorphic phase transitions in the steel target craters, and the decrease in the fracture toughness of the target is predicted as the cause of the strength irrelevance.

Effect of fly ash and plastic waste on mechanical and durability properties of concrete

  • Paliwal, Gopal;Maru, Savita
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.575-586
    • /
    • 2017
  • The disposal of polythene waste and fly ash is causing serious threat to the environment. Aim of this study is to decrease environmental pollution by using polythene waste and fly ash in concrete. In this study, cement was partially replaced with 0%, 5%, 10%, 15% and 20% fly ash (by weight) and plastic waste was added in shredded form at 0.6% by weight of concrete. The specimens were prepared for the concrete mix of M25 grade and water to cementitious material ratio (w/c) was maintained as 0.45. Fresh concrete property like workability was examined during casting the specimens. Hardened properties were found out by carrying out the experimental work on cubes, cylinders and beams which were cast in laboratory and their behavior under test were observed at 7 & 28 days for compressive strength and at 28 days for density, flexural strength, dynamic modulus of elasticity, abrasion resistance, water permeability and impact resistance. Overall results of this study show that addition of 0.6% (by weight of the concrete) plastic waste with 10% (by weight of cement) replacement of cement by fly ash result an improvement in properties of the concrete than conventional mix.

Analysis of the Mechanical Properties of High-Tension Performance Biochar Concrete Reinforced with PVA Fibers Based on Biochar Cement Replacement Ratio

  • Kim, Sangwoo;Lee, Jihyeong;Hong, Yeji;Kim, Jinsup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.603-613
    • /
    • 2024
  • This study evaluated the mechanical properties of high-tension performance biochar concrete, focusing on the effects of varying biochar cement replacement ratios (0 %, 1 %, 2 %, 3 %, 4 %, and 5 %). Mechanical properties, including compressive strength, tensile strength, and flexural strength, were tested. The results showed a general decrease in compressive strength with increasing biochar replacement, with significant reductions at 1 % to 3 % levels. PVA fiber reinforcement improved long-term compressive strength, particularly at higher biochar levels. Tensile and flexural strength also showed initial reductions with low biochar levels but improved at higher replacement levels. PVA fibers consistently enhanced tensile and flexural strength. SEM images confirmed the integration of biochar and PVA fibers into the cement matrix, enhancing microstructural density and crack resistance.

Physical and Mechanical Properties of 20-Year-Old Clonal Teak Trees in Ngawi, East Java, Indonesia

  • Widyanto Dwi NUGROHO;Mohammad NA'IEM;Ganis LUKMANDARU;WIDIYATNO;Yogi FERIAWAN;Fanany Wuri PRASTIWI;Aris WIBOWO;Diana PUSPITASARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.459-472
    • /
    • 2024
  • Teak tree breeding programs have been conducted over the last several decades in various locations throughout Indonesia. These programs have produced superior teak clones with growth increments > 3 cm diameter at breast height. The wood quality of this clonal teak must be evaluated to determine the final use of these trees and the success rate of the teak breeding programs. In this study we investigated the physical condition (reflected in wood color and heartwood percentage), physical properties (moisture content, basic density, shrinkage, and tangential/radial shrinkage ratio), and mechanical properties (modulus of elasticity, modulus of rupture, compressive strength parallel and perpendicular to grain, hardness, and cleavage strength) in 20-year-old clonal teak planted in Ngawi, East Java. The parameters were measured in the axial (bottom, middle, and top) and radial (near pith, middle, and near bark) directions and according to the British Standard 373:1957. The results showed that axial variation significantly affected the wood color (L*, a*, and b*), basic density, radial shrinkage, modulus of elasticity, and compressive strength parallel to the grain. Besides, the radial variation had a significant effect on wood color (L*), basic density, modulus of elasticity, modulus of rupture, compressive strength parallel and perpendicular to the grain, hardness, and cleavage strength. Based on these results, it can be concluded that the teak breeding program has been highly successful.

A Comparative study on Dynamic & Static elastic modulus of cement mortar specimens (시멘트 모르타르 재료의 동탄성계수와 정탄성계수 비교 연구)

  • O, Seon-Hwan;Kim, Hyoung-Soo;Jang, Bo-An;Suh, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.127-138
    • /
    • 2000
  • This study was conducted to examine the differences between dynamic and static elastic constants by use of some laboratory tests of cement mortar specimens which have different water/cement mixing ratios. Specific gravity measurement, ultrasonic velocity estimating and uniaxial compression test were adopted to acquire the dynamic and static elastic constants. Digital data acquisition and processing enhanced the accuracy of estimating the velocities of specimens drastically, Also, the method using the gradient of propagation delay time in according to increment of specimen length more enhanced the accuracy than the method using the only one specimen length over total propagation time. The correlation between density and the P and S wave velocity of specimens shows reliable positive relation and the correlation between density and the strength of uniaxial compression has the similar relationship. The dynamic Young's modulus $(E_D)$ is alway greater than the static Young's modulus $(E_S)$ and there is increasing tendency of the ratio $(E_D/E_S)$ according to the increase of density or strength of the specimens. On the other hand, there is no typical relationship between dynamic Poisson's ratio $({\nu}_D)$ and static Poisson's ratio $({\nu}_S)$ and just the ratio of ${\nu}_D/{\nu}_S$ ranges front 69 to 122 %.

  • PDF

Effect of Ca/P Mole Ratio on the Sintering of Hydroxyapatite Powders Synthesized by the Wet Method and its Microstructure (습식법으로 제조한 수산화아파타이트 분말의 소결과 그 미세구조에 미치는 Ca/P몰비의 영향)

  • 신용규;정형진;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.123-131
    • /
    • 1989
  • Hydroxyapatite powders were syntehsized by the reaction of Ca(NO3)2.4H2O and (NH4)2HPO4 in aqueous solution. The effect of the Ca/P mole ratio in the starting solution on the sintering of the powders and its microstructure was studied. When the Ca/P mole ratio in the starting solution was 1.69, the relative density of the sintered bodies was more than 95%. The sinterability was decreased as the Ca/P mole ratio in the starting solution was increased (Ca/P mole ratio >1.67). Hydroxyapatite sintered bodies obtained from the Ca/P mole ratio=1.69 had very excellent bending strength. The best bending strength was obtained at 110$0^{\circ}C$ and its value was 1220kg/$\textrm{cm}^2$. The average grain size was 0.277${\mu}{\textrm}{m}$. Most of sintered bodies were almost shown 100% hydroxyapatite phase. However, in case of the Ca/P mole ratio=1.64 hydroxyapatite was decomposed to $\alpha$-whitlockite above 120$0^{\circ}C$.

  • PDF

Bayes tests of independence for contingency tables from small areas

  • Jo, Aejung;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.207-215
    • /
    • 2017
  • In this paper we study pooling effects in Bayesian testing procedures of independence for contingency tables from small areas. In small area estimation setup, we typically use a hierarchical Bayesian model for borrowing strength across small areas. This techniques of borrowing strength in small area estimation is used to construct a Bayes test of independence for contingency tables from small areas. In specific, we consider the methods of direct or indirect pooling in multinomial models through Dirichlet priors. We use the Bayes factor (or equivalently the ratio of the marginal likelihoods) to construct the Bayes test, and the marginal density is obtained by integrating the joint density function over all parameters. The Bayes test is computed by performing a Monte Carlo integration based on the method proposed by Nandram and Kim (2002).