References
- Agresti, A. and Hitchcock, D. B. (2005). Bayesian inference for categorical data analysis. Statistical Methods and Applications, 14, 297-330. https://doi.org/10.1007/s10260-005-0121-y
- Evans, R. and Sedransk, J. (1999). Methodoloty for pooling subpopulation regressions when sample sizes are small and there is uncertainty about which subpopulations are similar. Statistica Sinica, 9, 345-359.
- Evans, R. and Sedransk, J. (2003). Bayesian methodology for combining the results from different ex-periments when the specifications for pooling are uncertain: II. Journal of Statiatical Planning and Inference, 111, 95-100. https://doi.org/10.1016/S0378-3758(02)00287-2
- Kass, R. E. and Raftery, A. E. (1995). Bayes factor. Journal of the American Statistical Association, 90, 773-795. https://doi.org/10.1080/01621459.1995.10476572
- Leonard, T. (1977). Bayes simultaneous estimation for several multinomial distributions. Communications in Statistics: Theory and Methods, 6, 619-630. https://doi.org/10.1080/03610927708827520
- Malec, D. and Sedransk, J. (1992). Bayesian methodology for combining the results from different experiments when the specifications for pooling are uncertain. Biometrika, 79, 593-601. https://doi.org/10.1093/biomet/79.3.593
- Nandram, B. (1998). A Bayesian analysis of the three-stage hierarchical multinomial model. Journal of Statistical Computation and Simulation, 61, 97-112. https://doi.org/10.1080/00949659808811904
- Nandram, B. and Kim, H. (2002). Marginal likelihood for a class of Bayesian generalized linear models. Journal of Statistical Computation and Simulation, 72, 319-340. https://doi.org/10.1080/00949650212842
- Woo, N. and Kim, D. H. (2015). A Bayesian uncertainty analysis for nonignorable nonresponse in two-way contingency table. Journal of the Korean Data & Information Science Society, 26, 1547-1555. https://doi.org/10.7465/jkdi.2015.26.6.1547
- Woo, N. and Kim, D. H. (2016). A Bayesian model for two-way contingency tables with nonignorable nonresponse from small areas. Journal of the Korean Data & Information Science Society, 27, 245-254. https://doi.org/10.7465/jkdi.2016.27.1.245
Cited by
- Bayesian test of homogenity in small areas: A discretization approach vol.28, pp.6, 2017, https://doi.org/10.7465/jkdi.2017.28.6.1547