• Title/Summary/Keyword: Strength development factor

Search Result 321, Processing Time 0.026 seconds

A Study on Factors Influencing the Web Site Development (웹사이트 개발 수준에 영향을 미치는 요인에 관한 연구)

  • Moon Yong-Eun;Jung Eau-Jin
    • The Journal of Information Systems
    • /
    • v.12 no.2
    • /
    • pp.73-90
    • /
    • 2003
  • IT and e-business is a hot issue of the world business and economic communities. The web site is the portal through which most of electronic transactions are conducted today. The main purpose of this paper is to investigate on factors influencing the web site development at the firms in Korea. Survey questionnaires were distributed via email & post to 281 firms that have implemented web site. Out of 44 responded questionnaires, 39 data sets were available for statistical analysis with SPPSSWin 10.1. Factor analysis identified five dimensions of web site development : (1) support of top management, (2) information technologies maturity, (3) strategic utilization of web site, (4) strength of rivalry among competing firm, (5) support policy of the government. Results of this study show that information technologies maturity and strategic utilization of web site positively influence on web site development. But support of top management, strength of rivalry among competing firm and support policy of the government don't influence on web site development. This study may provide a guideline to improve the quality of web site development.

  • PDF

A Study on the Quality Fluctuation of Hot Weather Concrete (하절기 콘크리트의 품질특성 변화에 관한 연구)

  • 김동석;정연식;유재상;김창범;이종열;김영준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.665-668
    • /
    • 2001
  • Generally, according to rising of atmospheric temperature, a consistency of concrete decreases, and a slump property of concrete is changed to be large. Also, in the strength development of concrete, the strength development rate of long-term age(28day) in comparison to strength of early age(7day) and the absolute compressive strength decreases. Accordingly, in this study, experiments about quality evaluation of concrete utilizing Ordinary Portland Cement is carried out. As a result of experiments, there were a conspicuous change in slump of concrete due to temperature increase. In conclusion, the rising of atmospheric temperature was very important factor in affecting the quality fluctuation of hot weather concrete.

  • PDF

Reliability Evaluation of a Pin Puller via Monte Carlo Simulation

  • Lee, Hyo-Nam;Jang, Seung-gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.537-547
    • /
    • 2015
  • A Monte Carlo (MC) simulation was conducted to predict the reliability of a newly developed pyrotechnic pin puller. The reliability model is based on the stress-strength interference model that states that failure occurs if the stress exceeds the strength. In this study, the stress is considered to be the energy consumed by movement of a pin shaft, and the strength is considered to be the energy generated by pyrotechnic combustion for driving the pin shaft. Failure of the pin puller can thus be defined as the consumed energy being greater than the generated energy. These energies were calculated using a performance model formulated in the previous study of the present authors. The MC method was used to synthesize the probability densities of the two energies and evaluate the reliability of the pin puller. From a probabilistic perspective, the calculated reliability was compared to a deterministic safety factor. A sensitivity analysis was also conducted to determine which design parameters most affect the reliability.

Feasibility Study the Assessment Factor of Quality Performance Index in Expressway Concrete Pavement (고속도로 콘크리트 포장에 대한 품질평가지수 평가인자의 적정성 검토)

  • Lee, Seung Woo;Kim, Gyung il;Ko, Dong Sig;Hong, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.133-141
    • /
    • 2017
  • Traffic volume increases according to highway expansion and industrial development which causes repetitive defect and durability degradation on pavement. The research of quality assurance system used abroad has introduced Korea. Korea Expressway Corporation (KEC) has developed a Quality Performance Index (QPI) that quantitatively assesses the level of quality of the final product, and practical applications. Assessment factor on concrete pavement consisted of pavement thickness, compressive strength, IRI and spacing factor. Assessment factor on concrete pavement is determined by empirical evaluation factor from abroad. In this study, analysis of evaluation factors of concrete pavement by using pavement life prediction simulation and measured data were evaluated with consideration of feasibility of the assessment factor. Pavement life, performance and durability are affected by pavement thickness, compressive strength, IRI and spacing factor in assessment factor on concrete pavement, QPI.

A Study of Development Methods of Fatigue Life Improvement for the Suspension Material (현가장치재의 피로수명향상 공법개발에 관한 연구)

  • 박경동;정찬기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

A Case Study of Developing Rapid-Hardening Ultra-Low Temperature Adhesives by Mixture Design and Multiple Response Optimization (혼합물 실험계획과 다수 반응변수 최적화를 통한 속경화 초저온접착제 개발 사례)

  • Byun, Jai-Hyun;Seo, Pan Seok;Shin, Ji Eun;Lee, Lyun Gyu;Yeom, Ji Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.757-768
    • /
    • 2014
  • Purpose: In this paper we present a case study of developing fast curing adhesives for insulation material of LNG carriers using an extreme vertices design with four mixture components. Three material properties are considered - shear strength, viscosity, and tensile strength. In the optimization experiment, we used hardness instead of tensile strength due to shortage of specimens. Methods: We employ four-factor extreme vertices design with 19 runs and desirability function approach for simultaneously optimizing three responses. After selecting optimal condition of the mixture components, we do confirmation experiments to verify the reproducibility of the optimal condition under manufacturing circumstance. Results: Simultaneous optimal condition for the three responses, that is, shear strength, viscosity, and harness is obtained. At the optimal condition, confirmation experiments are executed in manufacturing circumstance. The variation for the shear strength is not satisfactory, which is due to the variation of the humidity. Conclusion: At the optimal condition three material properties are satisfactory. To reduce the variability for the shear strength, robust design is needed.

Temperature and humidity effects on behavior of grouts

  • Farzampour, Alireza
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.659-669
    • /
    • 2017
  • Grouts compared to other material sources, could be highly sensitive to cold weather conditions, especially when the compressive strength is the matter of concern. Grout as one the substantial residential building material used in retaining walls, rebar fixation, sidewalks is in need of deeper investigation, especially in extreme weather condition. In this article, compressive strength development of four different commercial grouts at three temperatures and two humidity rates are evaluated. This experiment is aimed to assess the grout strength development over time and overall compressive strength when the material is cast at low temperatures. Results represent that reducing the curing temperature about 15 degrees could result in 20% reduction in ultimate strength; however, decreasing the humidity percentage by 50% could lead to 10% reduction in ultimate strength. The maturity test results represented the effect of various temperatures and humidity rates on maturity of the grouts. Additionally, the freeze-thaw cycle's effect on the grouts is conducted to investigate the durability factor. The results show that the lower temperatures could be significantly influential on the behavior of grouts compared to lower humidity rates. It is indicated that the maturity test could not be valid and precise in harsh temperature conditions.

Reliability Analysis of Reduction Factor for Structural Design Guideline(draft) of Fiber Reinforced High Strength Concrete (섬유보강 고강도 콘크리트 구조설계지침(안)의 저감계수에 대한 신뢰도 분석)

  • Kim, Ah-Ryang;Choi, Jungwook;Paik, Inyeol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.100-108
    • /
    • 2021
  • The purpose of this study is to analyze the reliability index of a design by applying the reduction factor of the recently developed fiber reinforced high strength concrete design guideline(draft). By collecting material and member test data performed for the development of the design guideline(draft), statistical characteristics of material strength and member strength analysis equations are obtained. A simul ation that appl ies the material statistical characteristics and the member anal ysis equation of the design guidel ine(draft) is performed, and the statistical characteristics of the section strength are calculated by combining the statistical characteristics of the analysis equation. Reliability analysis was performed by applying the load combination of the domestic highway bridge design code and concrete structural code, and it was confirmed that the design that applies the reduction factor for materials and members suggested in the design guideline(draft) satisfies the target reliability index.

Strength analysis of mechanical transmission using equivalent torque of plow tillage of an 82 kW-class tractor

  • Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Chung, Sun-Ok;Park, Seong-Un;Hong, Soon-Jung;Choi, Chang-Hyun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.723-735
    • /
    • 2019
  • The power-train is the most important component of an agricultural tractor. In this study, the strength of the driving gear transmission of an 82 kW-class tractor was analyzed using equivalent torque during plow tillage. The load measurement system consisted of an engine revolution speed sensor, torque-meters, revolution speed sensors for four axles, and pressure sensors for two hydraulic pumps. The load data were measured during plow tillage for four speed stages: F2 (2.78 km/h), F5 (5.35 km/h), F7 (7.98 km/h), and F8 (9.75 km/h). Aspects of the gear-strength such as bending stress, contact stress, and safety factors were analyzed under two torque conditions: the equivalent torque at the highest plow load for the F8 speed stage and the maximum engine torque. The simulation results using KISSsoft showed that the maximum engine torque conditions had a lower safety factor than did the highest equivalent torque condition. The bending safety factors were > 1 at all gear stages, indicating that gear breakage did not occur under actual measured operating conditions, nor under the maximum torque conditions. However, the equivalent torque condition in the contact stress safety factor was > 1, and the maximum torque condition was < 1 at the first gear pair. The method of analysis using the equivalent torque showed lower stress and higher safety factor than did the method using maximum torque. Therefore, when designing a tractor by applying actual working torque, equivalent torque method would support more reliable product development.

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF