• Title/Summary/Keyword: Strength degradation

Search Result 1,119, Processing Time 0.034 seconds

A Study on Material Degradation and Fretting Fatigue Behavior (재질 열화와 프레팅 피로거동 평가에 관한 연구)

  • Kwon, Jae-Do;Choi, Sung-Jong;Sung, Sang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.157-162
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range ken $290^{\circ}C{\sim}390^{\circ}C$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 1800hr at $430^{\circ}C$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

  • PDF

Physicochemical Characteristics of Cephalosporin Derivative, CKD-604 : Stabilization and Solubilization in Aqueous Media (세팔로스포린계 유도체 CKD-604 물성연구 : 수용액중에서의 안정화 및 가용화)

  • Kwon, Soo-Yeon;Shin, Hee-Jong;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.205-210
    • /
    • 1999
  • To formulate the parenteral delivery of a new cephalosporin derivative, 7-${\beta}$-[(2)-2-(2-arninothiazol-4-yl)-2methoxyiminoacetamido]- 3- [(2,3-cyclopenteno-4-carbamoyl-l-pyridinium)methyl]- 3-cephem-4-carboxylate sulfate( CKD604), the stability and solubility of CKD-604 in various aqueous media were investigated. The degradation kinetics of CKD-604 in aqueous solutions (ionic strength 0.1, pH 1-8) were studied at $37^{\circ}C$. The observed degradation rates followed pseudo first order kinetics. The pH-rate profile exhibited a minimum degradation rate at pH 5. The Arrhenius activation energy was 14.2 kcal/mol in pH 5 buffer solution. Excellent agreement between the cephalosporins' theoretical pH-rate profile and the experimental data indicated that the degradation pathway of CKD-604 could be predicted according to the general pathway of cephalosporins. The solubility of CKD-604 was 8.16 mg/ml at $25^{\circ}C$. To enhance the solubility and adjust the suitable pH, CKD-604 was solubilized by using sodium ascorbate, ascorbic acid and urea. The compositions were obtained to satisfy optimum pH and concentration, and the total amount of additives was several times of the active ingredient, CKD-604.

  • PDF

Physicochemical Stability of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Buffered Aqueous Solution (완충 수용액중 로이신엔케팔린 및 [D-알라$^2]$-로이신엔케팔린아미드의 물리화학적 안정성)

  • Park, In-Sook;Chun, In-Koo
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.488-495
    • /
    • 1994
  • To evaluate the feasibility of transmucosal delivery of leucine enkephalin (Leu-Enk) and its synthetic analog, $[D-Ala^2]$-leucine enkephalinamide (YAGFL), their physicochemical stabilities in aqueous buffered solutions were first investigated using a stability indicating high performance liquid chromatography. The degradation of Leu-Enk and YAGFL followed the pseudo-first-order kinetics. From the pH-rate profiles, it was found that the maximal stability of the two pentapeptides was at the pH of about 5.0. The shelf lives $(t_{90%})$ for the degradation of Leu-Enk and YAGFL at pH 5.0 and $40^{\circ}C$ were found to be 48.13 and 50.9 days, respectively. From the temperature dependence of the degradation, activation energies for Leu-Enk and YAGFL were calculated to be 13.61 and 13.47 kcal/mole, respectively. A higher ionic strength and a higher initial peptide concentration in buffered solution slowed the degradation of the two pentapeptides. The addition of 2-hydroxypropyl-${\beta}$-cyclodextrin into the peptide solution did not affect the stability significantly.

  • PDF

Nondestructive Evaluation for Mechanical Degradation of Ultrasuper-Critical Heat-Resistance Steel by Reversible Permeability (가역투자율를 이용한 초초임계압 내열강의 기계적 열화에 관한 비파괴평가)

  • Ahn, SeongBin;Kim, JaeJin;Seo, DongMin;Kim, ChungSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.46-52
    • /
    • 2018
  • Nondestructive evaluation for mechanical degradation of ultrasuper-critical (USC) heat-resistance steel, which is attractive to the next generation of power plants is studied by magnetic reversible permeability. The interrelationship between reversible permeability and high-temperature mechanical degradation has been investigated by precise measurement of permeability nondestructively. Also, the effects of microstructural variation on reversible permeability are discussed. Isothermal aging was observed to coarsen the tempered carbides ($Cr_{23}C_6$), generated the intermetallic phases ($Fe_2W$), and grow rapidly during aging. The dislocation density also decreases steeply within lath interior. The peak to peak interval (PPI) of reversible permeability profile decreased drastically during the initial 500 h aging period, and was thereafter observed to decrease only slightly. The variation in PPI is closely related to the decrease in the number of pinning sites and the degradation in tensile strength.

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

A Experimental Study for the Mechanical Behavior of Rock Joints under Cyclic Shear Loading (주기전단 하중하의 암석 절리의 역학적 거동에 관한 실험적 연구)

  • 이희석;박연준;유광호;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.350-363
    • /
    • 1999
  • The precision cyclic shear test system was established to investigate the mechanical characteristics of rough rock joints under cyclic loading conditions. Laboratory cyclic shear tests were conducted for saw-cut joints and artificial rough rock joints using Hwangdeung granite and Yeosan marble. Surface roughness and aperture characteristics of specimens were examined by measuring surface topography using the laser profilometer. Peak shear strength, phase difference during loading and unloading, and anisotropic shear behavior were investigated throughout the cyclic shear test results. These features and their subsequent variations in each loading cycle are significantly dependent upon the second order asperities and the strength of intact rock. It was observed that degradation of asperities for rough rock joints under cyclic shear loading followed the exponential degradation laws of asperity angle and that the mechanism for asperity degradation would be different depending upon the normal stress level, roughness of joint surface and the loading stage.

  • PDF

The Characteristics of Dynamic Behaviors for Geosynthetic-soil Interface Considering Chemical Influence Factors (화학적 영향인자를 고려한 토목섬유-흙 접촉면 동적거동 특성)

  • Park, Innjoon;Kwak, Changwon;Kim, Jaekeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.47-54
    • /
    • 2010
  • Nowadays, geosynthetics for reinforcement and protection are widely applied to the waste landfill site. Current research indicates the potential for progressive failure in geosynthetic-soil system depends on the interface shear strength governed by several intrinsic factors such as moisture, normal stress, chemical, etc. In particular, the effect of the acidity and basicity from the leachate is intensively reviewed to assess the chemical reaction mechanism of interface shear strength under the cyclic loading condition. New multi-purpose interface apparatus(M-PIA) has been manufactured and the cyclic direct shear tests using submerged geosynthetics and soils under the different chemical conditions have been performed, consequently, the thickness of interface and shear stress degradation are verified. The basic schematic of the Disturbed State Concept(DSC) is employed to estimate the shear stress degradation in the interface, then, normalized disturbed function is obtained and analyzed to describe the shear stress degradation of geosynthetic-soil interface with chemical influence factors under dynamic condition.

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test (전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가)

  • Yu, Ho-Seon;Song, Mun-Sang;Song, Gi-Uk;Ryu, Dae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.