DOI QR코드

DOI QR Code

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites

생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구

  • Received : 2013.09.13
  • Accepted : 2013.10.05
  • Published : 2013.12.31

Abstract

BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

폐플라스틱에 의한 환경오염 증가로 생분해성 고분자에 대한 관심이 커지고 있다. 본 연구에서는 생분해성 고분자인 폴리 L-락타이드(polylactic acid, PLA)와 폴리 L-락타이드(polylactic acid, PLA)/폴리 부틸렌 숙신산(polybutylene succinate, PBS)(90/10)수지를 기지재료로 하고 유기 크로사이트(cloisite ) 20을 나노 클레이(clay) 20으로 사용하여 이축압출기에서 Clay-20 함량별 로 압출시켜 나노복합체를 제조하였다. 사출성형기로 사출성형시편을 제조하여 나노복합체의 열적, 기계적, 형태학적 및 라만 분광학 특성을 시차열량분석기(differential scanning calorimeter, DSC), 인장시험기, 주사전자현미경(scanning electron microcopy, SEM), 라만-현미경 분광광도계로 조사하였고, 또한 가수분해특성을 조사하였다. 시차열량분석기와 주사전자현미경 시험 결과에서 PLA/Clay-20과 PLA/PBS/Clay-20 나노복합체의 결정화도가 Clay-20 함량이 증가함에 따라 증가하였고, Clay-20과 PLA 및 PLA/PBS 수지가 서로 상용성이 있는 것으로 확인되었다. 또한 Clay-20 함량이 증가함에 따라 두 나노복합체의 인장강도는 감소하지만 신도, 충격강도, 인장탄성률 및 굴곡탄성률이 증가하였다. 특히 Clay-20이 5 wt% 첨가된 PLA/Clay-20과 PLA/PBS/Clay-20 나노복합체의 충격강도는 순수 PLA와 PLA/PBS (90/10) 보다 2배 이상으로 증가하였다. Clay-20 3 wt% 첨가된 PLA/Clay-20 나노복합체의 가수분해속도는 순수 PLA 가수분해속도보다 두 배 정도 빨랐다. 이는 유기화 처리된 Clay-20 나노입자 표면의 친수성으로 계면에서 가수분해가 쉽게 일어나기 때문인 것으로 판단된다. 본 연구에서 적당량의 Clay-20 첨가로 PLA의 기계적특성 개선과 생분해 특성 조절 가능성을 확인하였다.

Keywords

References

  1. Booma, M. Selke, S. E., and Giacin, J. R., "Degradable Plastics," J. Elastomers Plastics, 26, 104-142 (1994). https://doi.org/10.1177/009524439402600203
  2. Fomin V. A., and Guzeev, V. V., "Biodegadable Polymer, their Present State and Future Prospects," Rubb. Plastics Technol., 17, 186-204 (2001).
  3. Mohanty, A. K. Drzal, T. T., and Misra, M., "Nano-reinforcement of Bio-based Polymer-the Hope and Reality," Polym. Mater. Sci. Eng., 88, 60-68 (2003).
  4. Hayashi, T., "Biodegradable Polymer for Biomedical Use," Prog. Polym. Sci., 19, 663-702 (1994). https://doi.org/10.1016/0079-6700(94)90030-2
  5. Rhim, J. W. Mohanty, A. K. Singh, S. P., and Perry, K. W., "Effect of the Processing Methods on the Performance of Polylactide Films Thermocompression Versus Solvent Casting," J. Appl. Polym. Sci., 101, 3736-3742 (2006). https://doi.org/10.1002/app.23403
  6. Tokiwa, Y., and Calabia, B. P., "Biodegradability and Biodegradation of Polyesters," J. Poly. Environ., 15, 259-267 (2007). https://doi.org/10.1007/s10924-007-0066-3
  7. Ratto, J. A. Stenhouse, P. J. Auerbach, M. Mitchell, J., and Farell, R., "Processing, Performance and Biodegradability of a Thermoplastic Aliphatic Polyester/Starch System," Polymer, 40, 6777-6788 (1999). https://doi.org/10.1016/S0032-3861(99)00014-2
  8. Bhatia, A. Gupta, R. K. Bhattacharya, S. N., and Choi, H. J. "Compatibility of Biodegradable Poly (Lactic Acid) (PLA) and Poly (Butylenes Succinate) (PBS) Blends for Packaging Application," Korea-Aust. Rheol. J., 19, 125-131 (2007).
  9. Okamoto, K. Suprakas, R. S., and Okamoto, M., "New Poly (Butylenes Succinate/Layered Silicate Nanocomposites, II, Effect of Organically Modified Layered Silicates on Structure, Properties, Melt Rheology, and Biodegradability," J. Polym. Sci.: Part B, 41, 3160-3172 (2003). https://doi.org/10.1002/polb.10708
  10. Garlotta, D., "Literature Review of Polylacetic Acid," J. Polym. Environ., 9, 63-84 (2001). https://doi.org/10.1023/A:1020200822435
  11. Rhim, J. W. Hong, S. I., and Ha, C. S., "Tensile, Water Vapor Barrier and Antimicrobial Properties of PLA/Nanoclay Composite Film," Food Sci. Technol., 42, 612-617 (2009).
  12. Krikorian, V., and Pochan, D. J., "Poly (L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties," Chem. Mater., 15, 4317-4324 (2003). https://doi.org/10.1021/cm034369+
  13. Chang, C. H. An, Y. U., and Sur, G. S., "Poly (Lactic Acid) Nanocomposites with Various Organoclays, I. Thermomechanical Properties, Morphology and Gas Permeability," J. Polym. Sci. Part B, 41, 94-103 (2003).
  14. Suprakas, R. S. Yamada, K. Okamoto, M., and Ueda, K., "Control of Biodegradability of Polylactide via Nanocomposite Technology," Macromol. Mater. Eng., 288, 203-208 (2003). https://doi.org/10.1002/mame.200390013
  15. Kumar, R. Yakubu, M. K., and Anandjiwala, R. D., "Biodegradation of Flax Fiber Reinforced Polylactic Acid," Express Polym. Letters, 4, 423-430 (2010). https://doi.org/10.3144/expresspolymlett.2010.53
  16. Hu, R. H. Sun, M. Y., and Lim, J. K., "Moisture Absorption, Tensile Strength and Microstructure Evolution of Short Jute Fiber/Polylactide Composite in Hydrothermal Environment," Mater. Design, 31, 3167-3173 (2010). https://doi.org/10.1016/j.matdes.2010.02.030
  17. Chow, W. S., and Lok, S. K., "Thermal properties of poly (Lactic Acid)/Organo-montmorillonite Nanocoposites," J. Therm. Anal. Calor., 95, 627-632 (2009). https://doi.org/10.1007/s10973-007-8975-x
  18. Flory, P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, N. Y. (1953). pp 170-186.
  19. Dan, C. H., and Kim, J. H., "Synthesis and Properties of Environmentally-friendly Aqueous Polyurethane Dispersion/Clay Nanocomposites," Clean Tech., 12, 11-18 (2006).
  20. Zhao, L. Li, Y., and Shimizu, H., "Structural Control of Co-continuous Poly (L-lactide)/Poly (Butylenes Succinate)/ Clay Nanocomposites," J. Nanosci. Nanotech., 9, 2722-2776 (2009).

Cited by

  1. Development of Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.205
  2. Impact behavior on temperature effect of nano composite materials vol.51, pp.4, 2015, https://doi.org/10.3796/KSFT.2015.51.4.561
  3. Impact fracture behavior on particle volume fraction of nano silica composite materials vol.51, pp.3, 2015, https://doi.org/10.3796/KSFT.2015.51.3.454
  4. 복합기능성 생분해 PLA 시트에 관한 연구 vol.5, pp.1, 2019, https://doi.org/10.17703/jcct.2019.5.1.341
  5. Mechanical Properties and Thermal Stability of Waste PVC/HDPE Blend Prepared by Twin-screw Extruder vol.54, pp.1, 2019, https://doi.org/10.7473/ec.2019.54.1.7