• 제목/요약/키워드: Strength degradation

검색결과 1,115건 처리시간 0.023초

강우강도에 따른 아스팔트 혼합물 종류의 수분민감도 평가 (An Evaluation of Moisture Susceptibility on Asphalt Mixtures by Rainfall Intensity)

  • 정종석;김용락;이상혁;김효진
    • 한국도로학회논문집
    • /
    • 제16권5호
    • /
    • pp.29-38
    • /
    • 2014
  • PURPOSES : The purpose of this study is to evaluate moisture susceptibility of a dense graded and an open graded asphalt mixtures by the method of AASHTO T-283. METHODS : To simulate moisture damage of asphalt pavements with continuously rainfall during summer rainy season, the dense graded and the open graded asphalt mixtures were immersed in water for 15 days and were measured the weight and the change of strength. Also, the mixtures were performed five freeze-thaw cycles to simulate moisture damage of the mixtures by freeze-thaw during winter and were measured the change of strength. The degradation characteristics model was used to analyze the relationship between strength and moisture damage. RESULTS : According to the results, the dense graded and the open graded asphalt mixtures were shown in the similar trends of the strength changes by immersion time and freeze-thaw cycle. However, the moisture damage reduction of open graded asphalt mixture was more sensitive in early phase than that of dense graded asphalt mixture.

굵은골재 최대치수 40 mm 투수 콘크리트의 물리적 특성과 질소산화물 제거에 관한 연구 (An Experimental Study on NOx Degradation Efficiency and Physical Characteristics of Maximum Size 40 mm Porous Concrete)

  • 홍종현;김문훈;류성필;정광옥
    • 한국환경과학회지
    • /
    • 제15권5호
    • /
    • pp.431-438
    • /
    • 2006
  • The strength, water permeability, and photo-degradation efficiency of NOx of porous concrete with a new concept were studied in this paper. The porous concrete was comprised of coarse aggregate of maximum size 40 mm, cement, silica fume, water and air-entraining(AE) water reducing agent. The strength of porous concrete was strongly related to its matrix proportion and compaction energy. An experimental test was carried out to study the parameters of cement proportions and silica fume content for pavement applications of porous concrete which were paving a footpath, a bikeway, a parking lot, and a driveway. The regressed equations of relation-ships between compressive strength and flexural strength, and coefficient permeability and void ratios were indicated as y=7.69x+71.74 and $y=0.42e^{0.28x}$. A method of making an air purification-functioning road, which was spraying a mixture of a photocatalyst, cement, and water onto the surface of the road, was suggested.

형상기억합금 선재가 삽입된 폴리머기지 능동복합재료의 회복력에 미치는 계면 접합강도의 영향 (Effect of interface bonding strength on the recovery force of SMA reinforced polymer matrix smart composites)

  • 김희연;김경섭;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.18-21
    • /
    • 2003
  • The effect of interface bonding strength on the recovery force of SMA wire reinforced polymer matrix composites was investigated by pullout test. Firstly, the recovery forces and transformation temperatures of various prestrained SMA wires were measured and 5% prestrained SMA wires were prepared for the reinforcements of composites. EPDM incorporated with 20vol% silicon carbide particles(SiCp) of 6, 12, $60{mutextrm{m}}$ size were used as matrix. Pullout test results showed that the interface bonding strength increased when the SiCp size decreased due to the increase of elastic modulus of matrix. Cyclic test of composites was performed through control of DC current at the constant displacement mode. The abrupt decrease of recovery force during cycle test at high current was occurred by thermal degradation of matrix. This was in good agreement with temperature related in the thermal degradation of matrix. The hysteresis of recovery force with respect to the temperature was compared between wire and composite and the hysterisis of composites was smaller than the wire due to less thermal conduction.

  • PDF

견직물의 광열화 거동 (Photo-Degradation Behavior of Silk Fabrics)

  • 이학정;권영숙;장정대;이상준;조현혹
    • 한국염색가공학회지
    • /
    • 제18권6호
    • /
    • pp.37-42
    • /
    • 2006
  • Researches to preserve and restore the remaining fabrics as costume heritages have been carried out. In this study, in order to artificially restore an excavated silk fabrics, degummed silk fabrics and safflower dyed silk fabrics were prepared for an experiment. These fabrics were photo-degraded by the Xenon arc beam to have various strength retention(100%, 80%, 60%, 40%, 20%). The fine structure and physical properties of Xenon arc treated fabrics were investigated with various techniques such as tensile test, weight loss, wide-angle X-ray diffraction, yellowness, color, SEM etc. Tensile strength and the crystal diffraction intensity of silk fabrics decreased as Xenon arc hem treatment time increased. Weight loss increased slightly. Strength retention was decreased as the Xenon arc beam treatment time goes by. (Yellowness of the undyed silk fabrics and $L^*$ of the dyed silk fabrics increased. Whiteness of the undyed silk fabrics and $b^* of the dyed silk fabrics decreased.) SEM results of the silk fabrics treated Xenon arc beam show that surface was a little damaged.

Flexural behavior of reinforced lightweight concrete beams under reversed cyclic loading

  • Chien, Li-Kai;Kuo, Yi-Hao;Huang, Chung-Ho;Chen, How-Ji;Cheng, Ping-Hu
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.559-572
    • /
    • 2014
  • This paper presents the results of an experimental investigation on the flexural behavior of doubly reinforced lightweight concrete (R.L.C.) beams tested under cyclic loading. A total of 20 beam specimens were tested. Test results are presented in terms of ductility index, the degradation of strength and stiffness, and energy dissipation. The flexural properties of R.L.C. beam were compared to those of normal concrete (R.C.) beams. Test results show that R.L.C. beam with low and medium concrete strength (20, 40MPa) performed displacement ductility similar to the R.C. beam. The ductility can be improved by enhancing the concrete strength or decreasing the tension reinforcement ratio. Using lightweight aggregate in concrete is advantageous to the dynamic stiffness of R.L.C. beam. Enhancement of concrete strength and increase of reinforcement ratio will lead to increase of the stiffness degradation of beam. The energy dissipation of R.L.C beam, similar to R.C. beam, increase with the increase of tension reinforcement ratio. The energy dissipation of unit load cycle for smaller tension reinforcement ratio is relatively less than that of beam with higher reinforcement ratio.

실외에서 발생되는 폐 담배필터의 분해특성 (The degradation characteristics of waste cigarette filter in outdoor)

  • 김주학;윤오섭;이문수
    • 한국연초학회지
    • /
    • 제21권2호
    • /
    • pp.136-143
    • /
    • 1999
  • This study was conducted to evaluate the degradation characteristics of waste cigarette filters under 0, 5, 10, and 15cm in depth from soil surface by environmental conditions. Weather was the most important factor during degradation of waste cigarette filters in this study. Bulking of cellulose acetate filaments exposed on soil surface was observed after 2 months, but the form of filter was kept up after 12 months. The treated cigarette filters in soil landfill revealed a little different degradation pattern at each soil landfill depth, The sample in 5cm depth of soil was more degraded then other site. A fluffy appearance of cellulose acetate filaments in the control filter rods was also developed more strongly in soil landfill then on soil surface. From the observation of waste cigarette filters by scanning electron microscopy, much degradation of the fiber of waste cigarette filters could be ascertained in soil landfill. The weight of waste cigarette filters under 5cm from soil surface was reduced about 50%, and the tensile strength of the samples in soil surface and under 5cm from soil surface were reduced 66.0% and 92.4%, respectively. The microbial experiment date that the viable cell number in microbial population and cellulolytic microorganisms showed the maximum values under 5cm from soil surface, suggest that microorganisms in soil play an important roll in the degradation of acetate cigarette filters.

  • PDF

수치해석을 이용한 터널 부재의 열화로 인한 장기 거동 예측 (Numerical Approach to Predict the Long Term Behavior of Tunnel Considering the Degradation of Tunnel Members)

  • 반호기;김동규
    • 한국지반환경공학회 논문집
    • /
    • 제23권12호
    • /
    • pp.33-39
    • /
    • 2022
  • 본 논문은 터널을 구성하고 있는 구성요소(지보재, 주변지반)들의 열화로 인한 터널의 장기거동을 수치해석을 이용하여 예측/분석하였다. 터널의 구성요소들은 시간이 지남에 따라 열화를 겪게 된다. 이러한 열화로 인해 터널의 장기적인 안정성을 예측하는 것은 매우 중요한 이슈이다. 따라서 본 연구에서는 열화를 예측하는 모델을 제시하였으며, 이 모델은 두 개의 파라미터로 구성되어 있다. 그 중 하나는 부재 및 주변지반의 열화로 인해 남아있는 잔류강도를 나타내며, 나머지 하나는 열화되는 모양을 표시한다. 제안한 열화 모델을 이용하여 수치해석을 수행하여 터널의 장기거동을 예측하였다. 그 결과 열화로 인해 터널 주변 지반의 이완응력이 증가하여 터널의 장기적인 안정성에 영향을 미치고 있음을 알 수 있었다.

Effect of moisture on the compressive strength of low-strength hollow concrete blocks

  • Syiemiong, Hopeful;Marthong, Comingstarful
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.267-272
    • /
    • 2019
  • In order to study the effect of moisture on the compressive strength of low-strength hollow concrete blocks, an experimental study was carried out on 96 samples of locally manufactured hollow concrete blocks collected from three different locations. Uniaxial compression tests were conducted on dry specimens and three types of saturated specimens with moisture contents of 30%, 50% and 80% respectively. The range of moisture content adopted covered the range within which the concrete block samples are saturated in the dry and monsoon seasons. The compressive strength of low-strength hollow concrete blocks decreases with increase in moisture content and the relationship between compressive strength of hollow concrete blocks and their moisture content can be considered to be linear. However, the strength degradation of 30% moist concrete blocks with respect to dry blocks is relatively low and can be considered to be comparable to dry concrete blocks. A formula indicating the relationship between the moisture content and compressive strength of low-strength hollow concrete blocks is also proposed.

Strength degradation of a natural thin-bedded rock mass subjected to water immersion and its impact on tunnel stability

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Wu, Yongjin;He, Jun
    • Geomechanics and Engineering
    • /
    • 제21권1호
    • /
    • pp.63-71
    • /
    • 2020
  • Strength anisotropy is a typical feature of thin-bedded rock masses and their strength will be degraded subjected to water immersion effect. Such effect is crucial for the operation of hydropower plant because the impoundment lifts the water level of upstream reservoir and causes the rock mass of nearby slopes saturated. So far, researches regarding mechanical property of natural thin-bedded rock masses and their strength variation under water immersion based on field test method are rarely reported. This paper focuses on a thin-bedded stratified rock mass and carries out field test to investigate the mechanical property and strength variation characteristics. The field test is highlighted by samples which have a large shear dimension of 0.5 m*0.5 m, representing a more realistic in-situ situation than small size specimen. The test results confirm the anisotropic nature of the concerned rock mass, whose shear strength of host rocks is significantly larger than that of bedding planes. Further, the comparison of shear strength parameters of the thin-bedded rock mass under natural and saturated conditions show that for both host rocks and bedding planes, the decreasing extent of cohesion values are larger than friction values. The quantitative results are then adopted to analyze the influence of reservoir impoundment of a hydropower plant on the surrounding rock mass stability of diversion tunnels which are located in the nearby slope bank. It is evaluated that after reservoir impoundment, the strength degradation induced incremental deformations of surrounding rock mass of diversion tunnels are small and the stresses in lining structure are acceptable. It is therefore concluded that the influences of impoundment are small and the stability of diversion tunnels can be still achieved. The finings regarding field test method and its results, as well as the numerical evaluation conclusions are hoped to provide references for rock projects with similar concerns.

고인성 열가소성 복합재료 AS4/PEEK의 피로강도에 관한 기초적 검토 (A Preliminary Study on Fatigue Strength of High Toughness Thermoplastic Composite Material AS4/PEEK)

  • 송지호;강재윤
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.1055-1064
    • /
    • 2000
  • First, various specimen geometries, namely, coupon type, waisted type and dog-bone type, were examined to determine appropriate fatigue specimen of thermoplastic composite material AS4/PEEK and the n, fatigue strength of smooth and notched specimens of AS4/PEEK [-45/0/+45/90]2s was investigated. Fatigue tests were performed under load controlled condition at a stress ratio of 0. 1 at a frequency of 5Hz. Stiffness degradation of specimens with fatigue cycling was monitored using an automated unloading compliance technique. The waisted type specimen is found appropriate for smooth fatigue specimen geometry of AS4/PEEK. As for the effect of stress concentration, it is found that fatigue strength is higher for a 2mm-diameter hole notched specimen than a 5mm-diameter one. Fatigue notch factor decreases with the increase of fatigue life. These results are far different from the trend of fatigue strength of metallic materials. The stiffness variation of smooth specimen was only 4% at maximum until final fracture. On the other hand, the stiffness of hole notched specimen was reduced by 45% at maximum. Notched fatigue strength was compared between thermoplastic composite AS4/PEEK and thermosetting composite Graphite/Epoxy. In long-life fatigue (>104), the AS4/PEEK composite shows superior fatigue strength, but in short-life fatigue, the fatigue strength of the Graphite/Epoxy composite is nearly equal or somewhat higher than that of the AS4/PEEK composite.