• 제목/요약/키워드: Strength Development

검색결과 5,244건 처리시간 0.038초

음이온교환수지 혼입 시멘트 모르타르의 압축강도에 관한 실험적 연구 (An Experimental Study on the Compressive Strength of Cement Mortar mixing Anion Exchange Resin)

  • 정도현;이윤수;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.54-55
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Securing the performance of reinforced concrete is directly connected to the durability and longevity of the building. One of the major factors that deteriorate the durability of concrete is harmful ion. Recently, the quality and improvement method of reinforced concrete for penetration of harmful ion has been studied. In this study, the bead type ion exchange resin is substituted for 0%, 3%, and 6% of the fine aggregate volume in the mortar. The speciments underwent underwater curing and were checked for compressive strengths of 3 days and 28 days. From the results of compressive strength, it can be seen that the higher the substitution ratio of the ion exchange resin, the lower the early strength and long-term strength development, especially the early strength development.

  • PDF

초기 고온이력을 받은 시멘트 모르타르의 강도 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Strength in Mortar under High Temperature conditions in an Early Age)

  • 김영주;김한식;공민호;김제섭;이영도;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.517-520
    • /
    • 2005
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of quality control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

콘크리트 조기강도 발현방법에 관한 연구 (A Study on Development Method for Early-Strength Concrete)

  • 류종현;전현규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.681-684
    • /
    • 2008
  • The way to shorten a construction period is considered to an very important technology element as reducing the form work removal periods with promoting strength revelation own concrete. This study presents an experimental study on the development method, material for early strength concrete. The result is as follow : In OPC, the compressive strength has over 5MPa after 26hours at 20$^{\circ}C$ curing and another 36hours at 10$^{\circ}C$ curing. Used with early strength potland cement, the compressive strength has over 5MPa after 15hours at 20$^{\circ}C$ curing temperature and another 30hours at 10$^{\circ}C$ curing temperature.

  • PDF

모르터 압축강도 특성에 영향을 미치는 고온이력에 관한 실험적 연구 (An Experimental Study on the Characteristics of Strength in Mortar under High Temperature conditions in an Early Age)

  • 김영주;공민호;송인명;양동일;백민수;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.703-706
    • /
    • 2004
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of quality control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

한중조건에서 시멘트 종류 및 양생온도별 콘크리트의 강도 발현 특성 (Characteristics of Concrete Strength Development Based on Cement Type and Curing Temperature in Cold-Weather Conditions)

  • 한준희;임군수;이현직;박재웅;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.153-154
    • /
    • 2023
  • In this study, analyzed the difference in compressive strength of concrete under cold conditions, using the 28-day standard curing compressive strength as a reference and examining variations based on cement types and curing temperatures. The results showed that the strength difference based on curing temperatures reached up to 9MPa at 0℃. However, as the curing period progressed, the difference in strength due to curing temperature gradually diminished. These findings are anticipated to be valuable for concrete mixing and quality control in cold weather conditions.

  • PDF

Proposed Design Provisions for Development Length Considering Effects of Confinement

  • Choi, Oan-Chul;Kim, Byoung-Kook
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.49-54
    • /
    • 2006
  • Confinement is major contribution to bond strength between reinforcement steel bars and concrete. Cover thickness, bar spacing and transverse reinforcement are the key confinement factors of current provisions for the development and splices of reinforcement. However, current provisions are still too complicated to determine the values of the confinement, which need to be well delineated in the process of design. In this study, an experimental work using beam-end and splice specimens was performed to examine the effect of concrete cover on bond strength. The results of this experiment and previously available data are analyzed to identify the effects of confinement on bond strength. From this reevaluation, new provisions for the development and splices of reinforcement are proposed. The provisions suggest some limitations in the confinement index. The new provisions will allow the engineers to use a simple and yet satisfactory and appropriate method or a precise approach for design to determine the values of confinement on the calculation of development and splice lengths.

원전구조물의 확대머리 고강도철근 적용기술 개발 (The Technology Development for applying the High Strength Headed Deformed Bar to the Nuclear Power Plant Structures)

  • 이병수;방창준;이한우;임상준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.273-275
    • /
    • 2013
  • If the mechanical development is applied to the Nuclear Power Plant Structures instead of the standard hook development, the problem of overcrowding re-bars in the anchorage zone can be solved and the construction quality of the concrete work will be improved. But there are some problems in applying it to the NPP structures because of the restriction on the yield strength and diameter of the re-bar. After the performance evaluation test for the mechanical development, we can develop the new design equation of the mechanical development length in order to solve the limitation and apply it to NPP structures.

  • PDF

Modeling of Compressive Strength Development of High-Early-Strength-Concrete at Different Curing Temperatures

  • Lee, Chadon;Lee, Songhee;Nguyen, Ngocchien
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.205-219
    • /
    • 2016
  • High-early-strength-concrete (HESC) made of Type III cement reaches approximately 50-70 % of its design compressive strength in a day in ambient conditions. Experimental investigations were made in this study to observe the effects of temperature, curing time and concrete strength on the accelerated development of compressive strength in HESC. A total of 210 HESC cylinders of $100{\times}200mm$ were tested for different compressive strengths (30, 40 and 50 MPa) and different curing regimes (with maximum temperatures of 20, 30, 40, 50 and $60^{\circ}C$) at different equivalent ages (9, 12, 18, 24, 36, 100 and 168 h) From a series of regression analyses, a generalized rate-constant model was presented for the prediction of the compressive strength of HESC at an early age for its future application in precast prestressed units with savings in steam supply. The average and standard deviation of the ratios of the predictions to the test results were 0.97 and 0.22, respectively.

배쳐플랜트배합시험 및 실대부재시험을 통한 콘크리트의 조기강도 발현특성에 관한 실험적 연구 (An Experimental Study on the High Early Strength Development Properties of Concrete according to Batcher Plant Test and Mock-up Test)

  • 이지환;이종석;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.1-5
    • /
    • 2008
  • In this study, batcher plant composition test and mock-up test were carried out to conduct comparison and analysis on flow behavior and strength properties of concrete at early age. As a result, it was found that slump and amount of air in batcher plant composition test reached the target range. As for compressive strength, composition using HESPC showed the most excellent strength development. In mock-up test which was carried out to find out the strength properties, two methods with specimen and core test body both revealed HESPC as the most excellent composition. However, strength estimation with ultrasonic survey presented less reliable data. As a result of the previously conducted indoor composition test and the mock-up test in this study, target performance of concrete at early age was 4day/cycle. It was found that the optimum conditions that meet the required strength, 5MPa/18hr and 14MPa/36hr in mullion and transom are; curing temperature above 15℃, W/B 45%, unit-water 165kg/㎥ and CHC cement.

  • PDF

적산온도 기법을 활용한 건설생산현장에서의 강도예측모델 개발에 관한 연구 (A Study on Development of Strength Prediction Model for Construction Field by Maturity Method)

  • 김무한;남재현;길배수;최세진;장종호;강용식
    • 한국건축시공학회지
    • /
    • 제2권4호
    • /
    • pp.177-182
    • /
    • 2002
  • The purpose of this study is to develope the strength prediction model by Maturity Method. A maturity function is a mathematical expression to account for the combined effects of time and temperature on the strength development of a cementious mixture. The method of equivalent ages is to use Arrhenius equation which indicates the influence of curing temperature on the initial hydration ratio of cement. For the experimental factors of this study, we selected the concrete mixing of W/C ratio 45, 50, 55 and 60% and curing temperature 5, 10, 20 and $30^{\circ}C$. And we compare and evaluate with logistic model that is existing strength prediction model, because we have to verify adaption possibility of new strength prediction model which is proposed by maturity method. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor.