• Title/Summary/Keyword: Streamline effect

Search Result 75, Processing Time 0.021 seconds

Optimization of Groove Sizing in CMP using CFD (CFD를 이용한 CMP의 Groove Sizing 최적화)

  • Jang, Ji-Hwan;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1522-1527
    • /
    • 2004
  • In this paper, slurry fluid motion, abrasive particle motion, and effects of groove sizing on the pads are numerically investigated in the 2D geometry. Groove depth is optimized in order to maximized the abrasive effect. The simulation results are analyzed in terms of shear stress on pad, groove and wafer, streamline and velocity vector. The change of groove depth entails vortex pattern change, and consequently affects material removal rate. Numerical analysis is very helpful for disclosing polishing mechanism and local physics.

  • PDF

Numerical study on the two-dimensional stepped wall jet (단이 진 2차원 벽면분류에 대한 수치 해석)

  • 윤순현;엄윤섭;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.865-875
    • /
    • 1988
  • A two-dimensional stepped wall jet was numerically investigated by applying three different models : One is the standard k-.epsilon. and the other is the modified k-.epsilon. model which takes account of the streamline curvature effect by modifying the Reynolds shear stress and a source term in the dissipation equation, and a third is curvature dependent third-order correlation model. In order to test the influences of the numerical result, both the upwind scheme and the skew-upwind scheme were sued for the computations. By comparing the numerical results with available experiments, it was found that the modified k-.epsilon. model gives best overall prediction accuracy only when the numerical diffusion is eliminated by using the skew-upwind scheme. The numerical scheme was found to have more pronounced effect on the accuracy of the turbulence computation than the turbulence models.

Numerical Analysis of Turbulent Flow and Heat Transfer in a Rectangular Duct with a 180° Bend Degree (직사각단면을 갖는 180°곡관내의 난류 유동및 열전달에 관한 수치해석적 연구)

  • Choi, Y.D.;Moon, C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-336
    • /
    • 1994
  • A numerical simulation of velocity and temperature fields and Nusselt number distributions is performed by using the algebraic stress model (ASM) for the velocity profiles and low Reynolds number ${\kappa}-{\varepsilon}$ model and the algebraic heat flux model(AHFM) for turbulent heat transfer in a $180^{\circ}$ bend with a constant wall heat flux. In the low Reynolds number ${\kappa}-{\varepsilon}$ model, turbulent Prandtl number is modified by considering the streamline curvature effect and the non-equilibrium effect between turbulent kinetic energy production and dissipation rate. Every heat flux term presented in the transport equation of turbulent heat flux is reduced to algebraic expressions in a way similar to algebraic stress model. Also. in the wall region, low Reynods number algebraic heat flux model(AHFM) is applied.

  • PDF

A study on the effect of welding fume during the welding work (용접시 발생되는 용접흄에 관한 연구)

  • Lee, Gyeong-Man;Lee, Cheol-Gu
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.306-309
    • /
    • 2007
  • It shows not only positive effect with fan as a way of improving condition in workplace but also shows air supply, ventilation condition in welding site with CFD analyzation. Also when the wind blew to the front side by a fan, the welding Hume significantly reduced, As this was examined as CFD and was gone through enough exhaustion to become streamline flow laminar, the toxic materials will be reduced. The improvement of welding work and education are investigated to be more significant factors than wearing protective equipments and setting safety tools to prevent welding works from welding fume exposure.

  • PDF

Effect of rolling parameters on the evolution of texture during asymmetrical cold rolling of aluminum sheets (알루미늄 판재의 비대칭 냉간압연 시 집합조직 발달에 미치는 압연변수의 영향)

  • Kang, H.G.;Han, Y.H.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.84-86
    • /
    • 2007
  • Aluminum sheets were asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls in order to intensify the shear deformation. During asymmetrical cold rolling of aluminum sheets, a reduction per a rolling pass, initial sheet thickness, roll diameter, roll velocity ratio were varied to investigate the effect of rolling parameters. The formation of through thickness shear texture was related to the ratio of the contact length between the roll and sample($l_c$) to the sheet thickness(d). The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates $\dot{\varepsilon}_{13}$ and $\dot{\varepsilon}_{11}$ along the streamline in the roll gap.

  • PDF

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

Study on the Scale Effect of Viscous Flows around the Ship Stern (선미 점성 유동장에 미치는 척고효과에 관한 연구)

  • Kwak, Y.K.;Min, K.S.;Oh, K.J.;Kang, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Viscous flow around actual ship is calculated by an use of RANS equations. The propriety of this computing method, usefulness to hull form design and the scale effect which is the effect of viscous flow depending on the scale of ship model are investigated. Reynolds stress is modelled by using k-${\varepsilon}$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the arbitrary 3-dimensional shape of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM. In the calculation of pressure, SIMPLE method is adopted and the solution of the discretized equation is obtained by the line-by-line method with the use of TDMA The calculations of two ships, 4410 TEU container carrier and 50,000 DWT class bulk carrier, are performed at model and actual ship scale. The results are compared and discussed with the model test results which are viscous resistance, nominal wake distribution at propeller plane and limiting streamline on the hull surface. They describe the effect of stem form and the scale effect very well. In particular, the calculated nominal wake distribution and limiting streamline are agreed qualitatively with the experiments and the viscous resistance values are estimated within ${\pm}5%$ difference from the resistance tests.

  • PDF

A Study on the Plane Turbulent Offset Jet (평면 난류 오프셋 제트에 관한 연구)

  • 유정열;강신형;채승기;좌성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.357-366
    • /
    • 1986
  • The flow characteristics of two-dimensional turbulent offset jet which is discharged parallel to a solid wall has been studied experimentally and numerically. In the experiment, 3-hole pitot tube and 2 channel constant temperature hot-wire anemometer are used to measure local mean velocity, turbulence intensity and Reynolds stress while scannivalve is used to measure the wall pressure distribution. It is confirmed experimentally that local mean velocity is closely related to wall pressure distribution. It is also verified that for large Reynolds numbers and fixed step height there exists a similarity in the distribution of wall pressure coefficient. The maximum values of turbulence intensity occur in the top and bottom mixing layers and the magnitude of Reynolds stress becomes large in the lower mixing layer than in the top mixing layer due to the effect of streamline curvature and entrainment. In the numerical analysis, standard k-.epsilon. model based on eddy viscosity model and Leschziner and Rodi model based on algebraic stress model are adopted. The numerical analyses predict shorter reattachment lengths than the experiment, and this difference is judged to be due mainly to the problem of turbulence model constants and numerical algorithm. This also causes the inconsistency between the two results for other turbulence quantities in the recirculation region and impingement region, which constitutes a subject of a continued future study.

Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact (비균질 도시 지표에서 측정된 에디 공분산 난류 플럭스의 불확실성 분석: 좌표계 편향 영향)

  • Lee, Doo-Il;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.473-482
    • /
    • 2016
  • An accurate determination of turbulent fluxes over an urban area is a challenging task due to its morphological diversity and associated flow complexity. In this study, an eddy covariance (EC) method is applied over a highly heterogeneous urban area in a small city (Gongju), South Korea to investigate the quantitative influence of 'coordinate tilt' in determining the turbulent fluxes of sensible heat, latent heat, momentum, and carbon dioxide mass. Two widely-used coordinate transform methods are adopted and applied to eight directional sections centered on the site to analyze a 1-year period EC measurement obtained from the urban site: double rotation (DR) and planar fit (PF) transform. The results show that mean streamline planes determined by the PF method are distinguished from the sections, representing morphological heterogeneity of the site. The sectional pitch angles determined by the DR method also compare well with those in the PF method. Both the PF and DR methods show large variabilities in the determined streamline planes at each directional section, implying that flow patterns may form in a complicate way due to the surface heterogeneity. Resulting relative differences of the turbulent fluxes, defined by $(F_{DR}-F_{PF})/F_{DR}$, are found on average +13% in sensible heat flux, +21% in latent heat flux, +37% in momentum flux, and +26% in carbon dioxide mass flux, which are larger values than those reported previously for fairly homogeneous natural sites. The fractional differences depend significantly on wind direction, showing larger differences in northerly winds at the measurement site. It is also found that the relative fractional differences are negatively correlated with the mean wind speed at both stable/unstable atmospheric conditions. These results imply that EC turbulent fluxes determined over heterogeneous urban areas should be carefully interpreted with considering the uncertainty due to 'coordinate tilt' effect in their applications.

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.