• Title/Summary/Keyword: Stream Slope

Search Result 349, Processing Time 0.027 seconds

Improvement for Gutter Design Method in Sloping Area (비탈면 배수로 설계기술 개선에 관한 연구)

  • Lee, Young-Dai;Kim, Jong-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.109-115
    • /
    • 2008
  • Malfunction of gutter systems in the slope area accelerate to percolate surface flow into underground and to cause the decrease of soil strength, Overflowing from gutter causes soil erosion from slope surface, secondary it is one of the main reasons to cause disaster in the hillside area. Much researches were reported and are undergoing about flood disaster in the down stream area, but rare in the upper reach(hillside). It is considered that improving function of gutter in the hillside is very important to prevent the disaster caused by rainfall. In this paper, After analyzing relationship between rainfall and disaster on the hillside in Busan, researches about having surface flow run into gutter effectively and preventing from overflowing outside of gutter on the hillside in Busan were carried out. Improved design methods of gutter are suggested to mitigate disaster in the sloping area by analysis of collected data and hydraulic model test.

Long-term Trend Analysis of Major Tributaries of Nakdong River Using Water Quality Index (수질지수를 이용한 낙동강 주요 지류지천의 장기 경향성 분석)

  • Park, Jaebeom;Kal, Byungseok;Kim, Sanghun
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.201-209
    • /
    • 2018
  • In this study, the water quality index was calculated using the water quality monitoring data of the major tributaries of the Nakdong River and long-term trend analysis was performed to identify the tributaries requiring priority management. We used a Real-Time Water Quality Index method implemented by the Ministry of Environment. Linear regression as a parametric method and Mann-Kendall Test and Sen Slope Test as a nonparametric method were applied for the trend analysis. The water quality index of major tributaries except for Migeon2 and Seokyo2 was in the range below Fair grade and there were no significant trends for the rest of the sites except Bukan, Chennae, Hogye, Yongdeok. Therefore, in order to improve the water quality of the main stream, management of the tributaries should be preceded.

Unveiling the mysteries of flood risk: A machine learning approach to understanding flood-influencing factors for accurate mapping

  • Roya Narimani;Shabbir Ahmed Osmani;Seunghyun Hwang;Changhyun Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.164-164
    • /
    • 2023
  • This study investigates the importance of flood-influencing factors on the accuracy of flood risk mapping using the integration of remote sensing-based and machine learning techniques. Here, the Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms integrated with GIS-based techniques were considered to develop and generate flood risk maps. For the study area of NAPA County in the United States, rainfall data from the 12 stations, Sentinel-1 SAR, and Sentinel-2 optical images were applied to extract 13 flood-influencing factors including altitude, aspect, slope, topographic wetness index, normalized difference vegetation index, stream power index, sediment transport index, land use/land cover, terrain roughness index, distance from the river, soil, rainfall, and geology. These 13 raster maps were used as input data for the XGBoost and RF algorithms for modeling flood-prone areas using ArcGIS, Python, and R. As results, it indicates that XGBoost showed better performance than RF in modeling flood-prone areas with an ROC of 97.45%, Kappa of 93.65%, and accuracy score of 96.83% compared to RF's 82.21%, 70.54%, and 88%, respectively. In conclusion, XGBoost is more efficient than RF for flood risk mapping and can be potentially utilized for flood mitigation strategies. It should be noted that all flood influencing factors had a positive effect, but altitude, slope, and rainfall were the most influential features in modeling flood risk maps using XGBoost.

  • PDF

Hydrogeomorphological Characteristics and Landscape Change of Oegogae Wetland in Jirisan National Park (지리산 외고개습지의 수문지형특성과 경관변화)

  • YANG, Heakun;LEE, Haemi;PARK, Kyeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • Oegogae wetland is sub-alpine wetland which is formed in piedmont area in Jirisan National Park. Apparently Oegogae wetland seems to be well-protected wetland. Most alpine wetlands are located in the summit area, but Oegogae wetland is located in piedmont area which is transitional zone between the steep slope and relatively flat valley bottom. Oegogae wetland is active in terms of sedimentation and exceeds 1m in depth. Penetration tests show that composing material is soft such as peat and organic-rich sediment. Basal rock of the basin is gneiss and gneissic schist in general, which is good for the formation of wetland because those rocks are easy to form low permeability layer. Baseflow from the wetland takes control of the most of stream flow during the wet season and this is especially true during the dry season. Precipitation during the wet season increases water content and base flow from the wetland.

The application of GIS and RS for extracting Sumjin Watershed hydrologic-parameter (섬진강 유역 수문인자 추출을 위한 GIS와 RS의 활용)

  • 김지은;이근상;조기성;장영률
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.257-274
    • /
    • 2000
  • Recently, natural environment is being forced by the quick increasing of population and industrialization, and especially, capacity and pollution of water resource is being come to the front. It needs to extract the accurate topological and hydrological parameters of watershed in order to manage water resource efficiently. But, these data are processed yet by manual work and simple operation in hydrological fields. In this paper, we presented algorithm that could extract topological any hydrological parameters over Sumjin watershed using GIS and RS and it gives the saving of data processing time and the confidency of data. The extraction procedure of topological characteristics and hydrological parameters is as below. First, watershed and stream are extracted by DEM and curve number is extracted throughout the overlay of landcov map and soil map. Also, we extracted surface parameters like watershed length and the slope of watershed length by Grid computation into watershed and stream. And we gave the method that could extract hydrologic parameters like Muskingum K and sub-basin lag time by executing computation into surface parameters and average SCS curve number being extracted.

  • PDF

Estimation of Soil Loss into Sap-Gyo Reservoir Watershed using GIS and RUSLE (GIS와 RUSLE 기법을 이용한 삽교호유역의 토사 유실량 산정)

  • Kim, Man-Sik;Jung, Seung-Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • Prediction of exact soil loss yield has as important engineering meaning as prediction of exact flow measurement in a stream. The quantity of soil loss in a stream should be considered in planning and management of water resources and water quality such as design and maintenace of hydraulic structures : dams, weirs and seawalls, channel improvement, channel stabilization, flood control, design and operation of reservoirs and design of harbors. In this study, the soil loss of Sap-gyo reservoir watershed is simulated and estimated by RUSLE model which is generally used in the estimation of soil loss. The parameters of RUSLE model are selected and estimated using slope map, landuse map and soil map by GIS. These parameters are applied to RUSLE's estimating program. And soil loss under probability rainfall in different frequencies are estimated by recent 30 years of rainfall data of Sap-gyo reservoir watershed.

  • PDF

2-Dimensional Analysis and the Changes of Water Quality in the Channel at Dal Stream due to Rainfall-Runoff (강우-유출로 인한 달천 하도내 수질 변화와 2차원 해석)

  • Yeon, In-Sung;Lee, Jae-Kune;Lee, Ho-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.567-573
    • /
    • 2008
  • Water quality in the longitudinal and cross section was measured and analyzed at Dal stream. The change of water quality was compared with the change of discharge at the important points. When discharge was increased by rainfall, the concentration of BOD was decreased and the concentrations of TN and TP were increased. The correlation coefficient of BOD, TN, TP showed large with the water velocity and depth in the Case 2 that discharge was increased. Rainfall had much influenced in water quality because of moving the nonpoint source to the channel. Water velocity was analyzed by numerical model(Surface water Modeling System). Velocity was comparatively fast in the upstream that had a steep slope and narrow channel. The characteristics of pollution transfer was simulated in 2-dimensional channel, the pollution diffused rapidly to the center of flow in the main channel. Flow had much influenced in diffusion of pollution.

Mitigation of Ammonia Dispersion with Mesh Barrier under Various Atmospheric Stability Conditions

  • Gerdroodbary, M. Barzegar;Mokhtari, Mojtaba;Bishehsari, Shervin;Fallah, Keivan
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.125-136
    • /
    • 2016
  • In this study, the effects of the mesh barrier on the free dispersion of ammonia were numerically investigated under different atmospheric conditions. This study presents the detail and flow feature of the dispersion of ammonia through the mesh barrier on various free stream conditions to decline and limit the toxic danger of the ammonia. It is assumed that the dispersion of the ammonia occurred through the leakage in the pipeline. Parametric studies were conducted on the performance of the mesh barrier by using the Reynolds-averaged Navier-Stokes equations with realizable k-${\varepsilon}$ turbulence model. Numerical simulations of ammonia dispersion in the presence of mesh barrier revealed significant results in a fully turbulent free stream condition. The results clearly show that the flow behavior was found to be a direct result of mesh size and ammonia dispersion is highly influenced by these changes in flow patterns in downstream. In fact, the flow regime becomes laminar as flow passes through mesh barrier. According to the results, the mesh barrier decreased the maximum concentration of the ammonia gas and limited the risk zone (more than 500 ppm) lower than 2 m height. Furthermore, a significant reduction occurs in the slope of the upper boundary of $NH_3$ risk zone distribution at downstream when a mesh barrier is presented. Thus, this device highly restricts the leak distribution of ammonia in the industrial plan.

Statistical Approach to Groundwater Recharge Rate Estimation for Non-Measured Areas of Water Levels (미계측 지역 지하수 함양량 추정을 위한 통계적 접근)

  • Kim, Gyoobum;Kim, Kiyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.73-85
    • /
    • 2008
  • 320 national groundwater monitoring stations have been constructed since 1995 and groundwater levels are measured automatically 4 times a day at each well. It has a difficulty to estimate an average recharge rate of watershed using the recharge rate of the monitoring site because of the lack of its representative on converting a point recharge rate into a spatial one. In this study, the relations between site characteristics (topography, hydraulics, geology, facilities, etc.) and recharge rates of 223 monitoring sites, which were selected using cluster analysis, were analyzed using statistical methods, and finally, regression models were constructed for a recharge rate estimation of non-measured areas. The independent variables for these simple regression models, 1) width of adjacent stream, 2) distance to the nearest stream, 3) topographic slope, and 4) rock type, are proposed using analysis of variance. These models have lots of advantages such as an easy data collection from topographic and geologic maps, a few input variables, and also simplicity in use. Suitability analysis from the comparison between estimation values and original ones at monitoring sites shows that these models are useful for a groundwater recharge estimation.

  • PDF

Prediction of River-bed Change Using River Channel Characteristics and A Numerical Model (하도특성량과 수치모형에 의한 하상변동 예측)

  • Yoon, Yeo Seung;Ahn, Kyeong Soo
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.51-61
    • /
    • 2007
  • In natural river, river-bed change is greatly influenced by the various factors such as river improvement, change of watershed land use, construction of dam and reservoir, gravel mining, and so on. The knowledge about river-bed change in the river is essential in the river modification, wetlands plan, and maintaining stable alluvial rivers. In this study, river-bed change in the future was predicted by investigating river channel characteristics which play dominant role in the formation of channel and based on the numerical model through river survey and the grain size analysis. The Proposed investigation and model was applied to the Geum river and the Miho stream which have been experienced river degradation due to river aggregate dredging and now seams to be stable. The result of potential river-bed change which was estimated by investigating channel characteristic including slope of channel, friction velocity, and so on is similar to that which was estimated based on the numerical model. It was found that the Geum river and the Miho stream will be stable. In the future, if considering the characteristics of river channel which is estimated by the river-bed scour, sediment, and so on, it is possible that river improvement and wetland restoration plan are established stably and naturally.

  • PDF