• Title/Summary/Keyword: Strain-hardening cementitious composite(SHCC)

Search Result 10, Processing Time 0.024 seconds

Effect of Curing Conditions on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (양생조건에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Kim, Yong-Cheol;Jeon, Esther;Kim, Yun-Su;Ji, Sang-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.909-912
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. But SHCC has serious problem as drying shrinkage because silica powder is used to make SHCC in order to improve bond strength between reinforcing fibers and cement matrix. Therefore, curing method (period and temperature) is very important for SHCC to show high tensile performance. a variety of experiments have being performed to access the performance of SHCC recently. This research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA), Polyethylene (PE) fibers and steel cord (SC), and how curing method affects the composite property, and ultimately its strain-hardening performance.

  • PDF

Flexural and Tensile Performance of Strain-Hardening Cement Composite with Synthetic Fibers (합성섬유를 사용한 변형경화형 시멘트 복합체의 휨 및 인장성능)

  • Kim, Sun-Woo;Lee, Min-Jung;Jang, Yong-Heon;Jang, Gwang-Soo;Song, Seon-Hwa;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.925-928
    • /
    • 2008
  • Fiber is an important ingredient in strain-hardening cementitious composite (SHCC), which can control fracture of cementitious composite by bridging action. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of SHCC. To apply SHCC to structural member, SHCC must have economical efficiency and workability as well as own excellent tensile performance. For these purposes, four-point bending and direct tensile tests on SHCC with only hybrid synthetic fibers, total fiber volume fraction, $V_f$, is 1.5%, are carried out. The research emphasis is on the mechanical properties of SHCC made in Polyvinyl alcohol (PVA) and Polyethylene (PE) fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Also, effect of hybrid type and water-cement ratio on the behavior of SHCC was evaluated in this paper.

  • PDF

Performance Evaluation of the Joint using SHCC based on the Existence of the Tie Bar (SHCC를 사용한 접합부의 보강근 유무에 따른 성능 평가)

  • Song, Young-Jae;Yun, Hyun-Do;Jeon, Esther;Lee, Young-Oh;Nam, Sang-Hyun;Cha, Jun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.25-26
    • /
    • 2010
  • Strain-hardening cementitious composite(SHCC) has been expected excellent reinforcement performance in beam-column joint area. The main variables considered include the type of cement composites(premixed mortar, SHCC with hybrid fiber) and shape and existence of the tie bar. As the result of the tests, existence of the tie bar specimen showed better overall behavior than another.

  • PDF

The evaluation of Mechanical properties of Strain Hardening Cement-based composites manufactured at batcher plant (배처플랜트에 의해 제조된 SHCC의 역학적 성능 평가에 관한 연구)

  • Lim, Chang-Hyuck;Kim, Young-Sun;Kim, Young-Duck;Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.93-96
    • /
    • 2009
  • This study is to examine a change of quality and a material performance of fiber reinforced cement composite for mass production. It is necessary to make Strain-hardening cementitious composite(SHCC) by batcher plant for ready-mixed concrete and use the performance of SHCC which made based on laboratory level. This study makes a comparative performance of press and mechanics that is the property of Strain-hardening by direct tension. In case of making by batcher plant. This experiment has demonstrated that even if it takes long after being mixed small and compared with the one which made based on laboratory, it has a tendency to be dissatisfied with fiver's dispersion and lower its performance of Strain-hardening. The reason why the material performance of SHCC for mass production went down is through SHCC that mixed sometimes matrix's viscosity and fiber's dispersion.

  • PDF

Performance Experiments of SHCC and High Tensile Reinforced Composite Concrete Slabs (SHCC 및 고장력 철근 복합 콘크리트 슬래브의 성능실험)

  • Moon, Hyung-Joo;Cho, Chang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • A type of one-way concrete composite slabs made by strain hardening cementitious composites (SHCC) deck combined with high tensile reinforcements was developed and evaluated by four-point slab bending test. The SHCC material was considered to have an high-ductile and strain hardening behavior in tension after cracking. From experimental comparisons with conventional reinforced concrete slab, the proposed SHCC and high tensile reinforced concrete composite slab showed more improved responses both in service and ultimate load capacities as well as in control of crack width and deflection.

Structural Performance of Flexural Dominant Reinforced Concrete Beams strengthened in Beam-Column Joint with SHCC (변형경화형 시멘트 복합체(SHCC)로 보-기둥 접합부 단면이 증설된 휨항복형 철근콘크리트 보의 구조성능)

  • Song, Seon-Hwa;Jang, Gwang-Soo;Kim, Yun-Su;Kim, Sun-Woo;Kim, Yong-Cheol;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.53-56
    • /
    • 2008
  • Reinforced concrete rahmen structures has been required ductility as well as strength of beam-column joint in seismically hazard area. Some investigations have been presented for retrofitting and/or strengthening structural elements in structure. Strain-hardening cementitious composite(SHCC) has been expected excellent reinforcement performance in beam-column joint area. The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic moudulus, have great effect on the fracture behavior of SHCC. The purpose of this experimental study is to evaluate structural performance of exterior reinforced concrete beam-column joint strengthened with SHCC under cyclic loading.

  • PDF

Effect of Reinforcement details on the Seismic Performance of Precast Strain-Hardening Cementitious Composite(SHCC) Infill Walls (보강상세에 따른 프리캐스트 변형경화형 시멘트 복합체 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Song, Seon-Hwa;Yun, Yeo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.209-216
    • /
    • 2009
  • Flexible frames on their own offer little resistance to lateral forces, resulting often in large deflections and rotations at the joints. On the other hand, walls subjected to lateral loads fail mainly in shear at relatively small displacements. Therefore, when the nonductile frames and wall act together, the combined action of the composite system differs significantly from that of the frame or wall alone. The objective of the study is to evaluate seismic response of infill walls with notched midsection. Reinforcement detail of wall was main variable in the experiment. Also SHCC was used in order to prevent damage concentration into notched midsection of walls. Test results, SHCC infill walls show the multiple crack patterns as expected. However, PIW-ND specimen exhibits less story drift, stiffness and energy dissipation capacity than those of PIW-NC specimen.

Affecting Analysis of Air Content on the Tensile Properties of Strain-Hardening Cementitious Composite (고인성 복합재료의 인장특성에 공기량이 미치는 영향 분석)

  • Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Han-Jun;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.439-440
    • /
    • 2010
  • The Air content has a great effect on the Tensile Strain of Strain-Hardening Cement Composites. We analyze the Tensile Properties of SHCC with variations of air content from the laboratory test.

  • PDF

Mechanical Properties of Green Strain-Hardening Cement-based Composites with Recycled Materials (순환재료를 사용한 그린 변형 경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Lee, Young-Oh;Nam, Sang-Hyun;Cha, Jun-Ho;Kim, Yun-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.399-400
    • /
    • 2010
  • This paper presents results of an experimental program for evaluating the mechanical properties of green strain-hardening cementitious composite (SHCC) using recycled material. Recycled poly ethylene terephthalate (PET) fiber, fly ash, and recycled sand from waste concrete are used as materials for green SHCC. Test results indicated that average tensile strength of five dumbbell-shaped specimen is 4.76MPa and average compressive and flexural strength of three specimens are 38MPa and 7.40MPa, respectively.

  • PDF

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.