• Title/Summary/Keyword: Strain-hardening

Search Result 860, Processing Time 0.023 seconds

An Experimental Study on the Durability of High-Ductile Mortar (고인성 모르타르의 내구특성에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Ju-Sang;Hwang, Nam-Soon;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.71-74
    • /
    • 2007
  • With the changes of times the building materials tend to extend the demand for application under the special environment. Since high-ductile mortar is developed, the building materials show excellent performance like toughness, compression, tensile, and bending, etc. in the general concrete from the existing brittle point. And, recently they are widely used as repairing and reinforcing materials both at home and abroad because they are recognized as excellence like durability and fire-resistance. However, it is in a situation of creating problems in durability because it frequently happened deterioration of buildings that have already repaired and reinforced at a time when it requires reconstruction of recently deteriorated construction structure recently. Therefore, in this study improved with a more repair Material development and reinforcement of the second high-ductile mortar products for a variety of basic materials were presented want, research plans used include traditional repair materials and the newly developed PCM (polymer cement mortar) structural reinforcement type indicated that comparison. PCM analysis in order to present a rate depending on the types fiber 0, 1.2 and 2.0(%) at three levels and mixture water according to ratios of weight to Plain in the 2.0 and 1.85(kg) at two levels is set, the results were as follows. 1) This study has shown that PCM had excellent strain hardening behavior at the same time that the bending stress increased according to the fiber contents. 2) This study has shown that it had the durability performance due to the high substance transmission according to the fiber contents.

  • PDF

A Dual Triangular Pyramidal Indentation Technique Based on FEA Solutions for Material Property Evaluation (유한요소해에 기초한 이중 삼각뿔 압입 물성평가법)

  • Kim, Min-Soo;Hyun, Hong-Chul;Lee, Jin-Haeng;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.17-28
    • /
    • 2012
  • In this study, we suggest a method for material property evaluation by dual-triangular pyramidal indenters using the reverse analysis. First, we demonstrated that load-displacement curves of conical and triangular pyramidal indenters are different for the same material. For this reason, an independent research on the triangular pyramidal indenter is needed. From FE indentation analyses on various materials, we then investigated the relationships among material properties, indentation parameters and load-displacement curves. From this, we established property evaluation formula using dual-triangular pyramidal indenters having two different half-included-angles. The approach provides the values of elastic modulus, yield strength and strain-hardening exponent within an average error of 3% for various materials.

Fiber Bridging Model Considering Probability Density Function of Fiber Inclined Angle in Engineered Cementitious Composites (보강 섬유의 배향각에 대한 확률밀도함수를 고려한 ECC내의 섬유 가교 모델)

  • Kang, Cheol-Ho;Lee, Bang-Yeun;Park, Seung-Bum;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.587-596
    • /
    • 2009
  • The fiber bridging model is the crucial factor to predict or analyze the tensile behavior of fiber reinforced cementitious composites. This paper presents the fiber bridging constitutive law considering the distribution of fiber inclined angle and the number of fibers in engineered cementitious composites. The distribution of fiber inclined angle and the number of fibers are measured and analyzed by the image processing technique. The fiber distribution are considerably different from those obtained by assuming two- or three-dimensional random distributions for the fiber inclined angle. The simulation of the uniaxial tension behavior was performed considering the distribution of fiber inclined angle and number of fibers measured by the sectional image analysis. The simulation results exhibit multiple cracking and strain hardening behavior that correspond well with test results.

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.

The B2-B19-B19' Transformation in Ti-(45-x)Ni-5Cu-xMn (at%) (x = 0.5-2.0) Alloys

  • Jeon, Yeong-Min;Kim, Min-Gyun;Kim, Min-Su;Lee, Yong-Hee;Im, Yeon-Min;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.24-27
    • /
    • 2011
  • Effect of substitution of Mn for Ni on transformation behavior, shape memory characteristics and superelasticity of Ti45Ni-5Cu alloy has been investigated by means of electrical resistivity measurements, X-ray diffraction, thermal cycling tests under constant load and tensile tests. The one-stage B2-B19' transformation occurred when Mn content was 0.5 at%, above which the two-stage B2-B19-B19' transformation occurred. A temperature range where the B19 martensite exists was expanded with increasing Mn content because decreasing rate of Ms (60 K / % Mn) was larger than that of Ms' (40 K / % Mn). Ti-(45-x)Ni-5Cu-xMn alloys were deformed in plastic manner with a fracture strain of 60 % ~ 32 % depending on Mn content. Clear superelasticity was found in fully annealed Ti-(45-x)Ni-5Cu-xMn alloys with Mn content more than 1.0 at%, which was ascribe to a solid solution hardening by substitution of Mn for Ni.

Transformation Behavior of Ti-(45-x)Ni-5Cu-xCr (at%) (x = 0.5-2.0) Shape Memory Alloys

  • Im, Yeon-Min;Jeon, Young-Min;Kim, Min-Su;Lee, Yong-Hee;Kim, Min-Kyun;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • Transformation behavior and shape memory characteristics of Ti-(45-x)Ni-5Cu-xCr (x=0.5-2.0) alloys have been investigated by means of electrical resistivity measurements, differential scanning calorimetry, X-ray diffraction and thermal cycling tests under constant load. Two-stage B2-B19-B19' transformation occurred in Ti-(45-x)Ni-5Cu-xCr alloys. The B2-B19 transformation was separated clearly from the B19-B19' transformation in Ti-44.0Ni-5Cu-1.0Cr and Ti-43.5Ni-5Cu-1.5Cr alloys. A temperature range where the B19 martensite exists was expanded with increasing Cr content because decreasing rate of Ms (85 K / % Cr) was larger than that of Ms' (17 K / % Cr). Ti-(45-x)Ni-5Cu-xCr alloys were deformed in plastic manner with a fracture strain of 68% ~ 43% depending on Cr content. Substitution of Cr for Ni improves the critical stress for slip deformation in a Ti-45Ni-5Cu alloy due to solid solution hardening.

Estimation of Beam Plastic Rotation Demands for Special Moment-Resisting Steel Frames (강구조 특수모멘트골조의 보 소성변형요구량 평가)

  • Eom, Tae-Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.405-415
    • /
    • 2011
  • For the safe seismic design of buildings, it is necessary to predict the plastic deformation demands of the members as well as the story drift ratio. In the present study, a simple method of estimating the beam plastic rotation was developed for special-moment-resisting steel frame structures designed with strong column-weak beam behavior. The proposed method uses elastic analysis rather than nonlinear analysis, which is difficult to use in practice. The beam plastic rotation was directly calculated based on the results of the elastic analysis, addressing the moment redistribution, the column and joint dimensions, the movement of the plastic hinge, the panel zone deformation, the gravity load, and the strain-hardening behavior. In addition, the rocking effect of the braced frame or core wall on the beam plastic rotation was addressed. For verification, the proposed method was applied to a six-story special-moment frame designed with strong column-weak beam behavior. The predicted plastic rotations of the beams were compared with those that were determined via nonlinear analysis. The beam plastic rotations that were predicted using the proposed method correlated well with those that were determined from the nonlinear pushover analysis.

An Experimental Study on the Durability and Load Carrying Capacity of RC Structure Repair System Using FR-ECC (고인성 내화보수모르터(FR-ECC)를 활용한 RC 구조물 보수공법의 내구성능 및 내하력에 관한 실험적 연구)

  • Kim, Jeong Hee;Lim, Seung Chan;Kim, Jae Hwan;Kwon, Yung Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.75-86
    • /
    • 2012
  • This paper presents some research results on the shrinkage characteristics and frost resistance before and after cracking of FR-ECC(Fire Resistance-Engineered Cementitious Composite). Also, a waterstop performance and exfoliating resistance of multi-layer lining specimens using FR-ECC and flexural performance of beam member by repaired FR-ECC are estimated in this paper. Experimental results indicate that the plastic shrinkage crack and length change ratio of FR-ECC have been reduced as compared with that of the existing repair mortar, and that its crack resistance on the dry shrinkage is improved under the confining stress. As well as FR-ECC has been great in the frost resistance and its tensile properties under the cracked state have been not reduced by freezing and thawing reaction. In addition, beam member by repaired FR-ECC have been increased in the flexural properties such as initial crack moment, yeild moment, and its crack width has been controled in a stable by the frexural failure.

Cyclic behaviour and modelling of stainless-clad bimetallic steels with various clad ratios

  • Liu, Xinpei;Ban, Huiyong;Zhu, Juncheng;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.189-213
    • /
    • 2020
  • Stainless-clad (SC) bimetallic steels that are manufactured by metallurgically bonding stainless steels as cladding metal and conventional mild steels as substrate metal, are kind of advanced steel plate products. Such advanced composite steels are gaining increasingly widespread usage in a range of engineering structures and have great potential to be used extensively for large civil and building infrastructures. Unfortunately, research work on the SC bimetallic steels from material level to structural design level for the applications in structural engineering field is very limited. Therefore, the aim of this paper is to investigate the material behaviour of the SC bimetallic steels under the cyclic loading which structural steels usually could encounter in seismic scenario. A number of SC bimetallic steel coupon specimens are tested under monotonic and cyclic loadings. The experimental monotonic and cyclic stress-strain curves of the SC bimetallic steels are obtained and analysed. The effects of the clad ratio that is defined as the ratio of the thickness of cladding layer to the total thickness of SC bimetallic steel plate on the monotonic and cyclic behaviour of the SC bimetallic steels are studied. Based on the experimental observations, a cyclic constitutive model with combined hardening criterion is recommended for numerical simulation of the cyclic behaviour of the SC bimetallic steels. The parameters of the constitutive model for the SC bimetallic steels with various clad ratios are calibrated. The research outcome presented in this paper may provide essential reference for further seismic analysis of structures fabricated from the SC bimetallic steels.

Evaluation on Applicability of Finite Element Analysis in Model Test of Pile Pullout (말뚝 인발모형실험에 대한 유한요소해석의 적용성 평가)

  • You, Seung-Kyong;Shin, Heesoo;Lee, Kwang-Wu;Park, Jeong-Jun;Choi, Choong-Lak;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.11-21
    • /
    • 2019
  • This paper describes the applicability of FEA(Finite Element Analysis) to the simulation of pile pullout behavior under various soil conditions (relative density and fines content), in order to evaluate reasonably the pullout resistance of pile. That is, the results of previous research (You et al., 2018) were analyzed by FEA under the same conditions. The FEA results showed that axisymmetric analysis using virtual ground was able to evaluate the skin friction of the pile. Also, axisymmetric analysis, which can apply the shear resistance characteristics of the pile-soil interface in various soil conditions, could be used as an analytical method that can simulate a reasonable pile pullout behavior. Therefore, the analytical model proposed in this study was able to simulate appropriately the pullout behavior based on the stress-strain relationship of the pile-soil interface.