• Title/Summary/Keyword: Strain concentration factor

Search Result 81, Processing Time 0.024 seconds

Continuous Alcohol Fermentation by a Tower Fermentor with Cell Recycle Using Flocculating Yeast Strain (Flocculating 효모균주의 재순환에 의한 Tower 발효조를 이용한 연속알콜발효)

  • 페차랏칸자나시리완;유연우김공환
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 1989
  • A study on the continuous fermentation with cell recycle by a tower fermentor to produce ethanol has been carried out. ethanol fermentation was conducted with flocculating yeast strain, Saccharomyces cerevisiae TS4, to compare the ethanol productivity with conventional continuous process. Employing a 15% glucose feed, a cell density of 50 g/l was obtaind. The ethanol productivity of the cell recycle system was found to be 26.5g EtOH/1-hr, which was nearly 7.5 times higher than the conventional continuous process without cell recycle. A cell recycle ratio of 7 to 8 resulted in the highest ethanol productivity and cell concentration. Thus the cell recycle ratio was found to be a key factor in controlling the production of clarified overflow liquid. An aeration rate above 3.8 $\times$ 10-3 VVM seemed to decrease the ethanol productivity. The continuous fermentation with cell recycle was successfully used in the separation of cells from fermentation broth with enhancement of mixing in the tower fermentor.

  • PDF

Facilitation of the Diverse Processing of High Ductile ECC (Engineered Cementitious Composite) Based on Micromechanics and Rheological Control (마이크로 역학과 레올로지 제어에 의한 고인성 섬유복합재료 ECC(Engineered Cementitious Composite)의 다양한 타설 공정 구현)

  • Kim, Yun-Yong;Kim, Jeong-Su
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.27-39
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced ECC (engineered cementitious composite), optimizing both processing and mechanical properties for specific applications is critical. This study presents an innovative method to develop new class ECCs, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or shotcrete processing) while maintaining ductile hardened properties. In the material design concept, we employ a parallel control of fresh and hardened properties by using micromechanics and cement rheology. Control of colloidal interaction between the particles is regarded as a key factor to allow the performance of the specific processing. To determine how to control the particle interactions and the viscosity of cement suspension, we first introduce two chemical admixtures including a highly charged polyelectrolyte and a non-ionic polymer. Optimized mixing steps and dosages we, then, obtained within the solid concentration predetermined based on micromechanical principle. Test results indicate that the rheological properties altered by this approach were revealed to be highly effective in obtaining the desired function of the fresh ECC, allowing us to readily achieve hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension.

Fatigue Crack Initiation and Propagation From Two Micro Hole Defects (두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구)

  • Song, Sam-Hong;Bae, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

Rapid Selection of Multiple Gene Integrant for the Production of Recombinant Hirudin in Hansenula polymorpha

  • Kim Hwa Young;Sohn Jung Hoon;Kim Chul Ho;Rao K. Jagannadha;Choi Eui Sung;Kim Myung Kuk;Rhee Sang Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • For the rapid selection of higher recombinant hirudin producing strain in a methylotrophic yeast Hansenula polymorpha, a multiple gene integration and dose-dependent selection vector, based on a telomere-associated ARS and a bacterial aminoglycoside 3-phosphotransferase (aph) gene, was adopted. Two hirudin expression cassettes (HV1 and HV2) were constructed using the MOX promoter of H. polymorpha and the mating factor $\alpha$ secretion signal of S. cerevisiae. Multiple integrants of a transforming vector containing hirudin expression cassettes were easily selected by using an antibiotic, G418. Hirudin expression level and integrated plasmid copy number of the tested transformants increased with increasing the concentration of G418 used for selection. The expression level of HV1 was consistently higher than that of HV2 under the similar conditions, suggesting that the gene context might be quite important for the high-level gene expression in H. polymorpha. The highest hirudin producing strain selected in this study produced over 96 mg/L of biologically active hirudin in a 500-mL flask and 165 mg/L in a 5-L fermentor.

  • PDF

A Study on the LPG Explosion Characteristics of Non-uniform Concentration (불균일 농도 LPG의 폭발 특성에 관한 연구)

  • 오규형
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.111-116
    • /
    • 2003
  • LPG explosion characteristics in non-uniform concentration was investigated with a 270 liter explosion vessel of which the scale is 100 cm${\times}$60 cm${\times}$45 cm. Vented explosion and closed explosion system were used. Experimental parameter were position of ignition source, nozzle diameter and flow rate of gas. Non uniform concentration was controlled by the nozzle diameter and flow rate. Explosion pressure were measured with strain type pressure sensor and the flame behavior was pictured with the video camera. Based on this experimental result, it was found that the flow rate of gas and the duration of gas injection are important factor for mixing the gas in the vessel. And as the increase the non-uniformity of gas concentration, explosion pressure and pressure rise rate Is decrease but the flame resident time in the vessel is increase. Therefore gas explosion to fire transition possibility will increase in non-uniform concentration gas explosion.

Immunomodulatory effects of six Acetobacter pasteurianus strains in RAW-Blue macrophage

  • Sun Hee Kim;Woo Soo Jeong;So-Young Kim;Soo-Hwan Yeo
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.65-77
    • /
    • 2023
  • In this study, we investigated the immunological properties of six strains of Acetobacter pasteurianus through nuclear factor-kappa B/activator protein-1 (NF-κB/AP-1) transcription factor activation and nitric oxide (NO) and cytokine production in macrophages. We found that the six A. pasteurianus strains had no significant inhibitory effect on the cell viability of RAW-BlueTM cells at the concentration of (25, 50, 100 CFU/macrophage). The production of NO and cytokines (TNF-α, IL-1β, and IL-6) showed different abilities of immune activation for each strain, and it was 0.7 to 0.9 times higher than that of the LPS (100 ng/mL, v/v) positive control and 7 to 8 times superior to that of the negative control group. To explore the underlying mechanism, we evaluated the mRNA expression of pro-inflammatory genes. Consequently, we found that inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression including genes expression of cytokines were elevated by the six A. pasteurianus treatment. These results suggested that the six strains of A. pasteurianus have an excellent industrial application value as a functional material for the purpose of enhancing immune function.

Three-Dimensional Contact Stress Analysis for Structural Design of Bolted Joint Assembly of Pressure Vessels in Nuclear Power Plants (원자력 발전소용 압력용기의 볼트 연결 조립부 구조설계를 위한 3차원 접촉 응력 해석)

  • Lee, Boo-Youn;Kim, Tae-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.122-128
    • /
    • 1999
  • Bolted joint assembly for nuclear power plants consists of various components : cover plate, retainer plate, manway flange, gasket and stud bolts/nuts. To guarantee the soundness of the joint, it is important to prevent leakage through the gasket and reduce the stress concentration factor at the thread root. In this paper, Submodeling technique for the finite element method is proposed to accurately compute three dimensional contact stresses which govern the sealing performance and the maximum contact stresses at the threads root. For verification of global solutions used as boundary conditions of submodel solution, the stresses on the cover plate and the manway flange are measured by strain gages when internal pressure is applied to the bolted joint assembly. The numerical results are compared with the experimental results.

  • PDF

A study on the fatigue strength characteristics of ship structural steel with gusset welds

  • Park, Sung-Jo;Lee, Hyun-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.132-140
    • /
    • 2012
  • This study aims to assess fatigue property by the static overload and average load in the fillet welded joints which is on the ship structural steel having gusset welds. To this end, a small specimen was made, to which the same welding condition for the actual ship structure was applied, to perform fatigue tests. In this study, a method to simply assess changes in welding residual stress according to different static overload was suggested. By measuring actual strain at the weld toe, the weld stress concentration factor and property which is determined by recrystallization in the process of welding were estimated to investigate the relation between overload and fatigue strength.

Thermal stress analysis around a cavity on a bimetal

  • Baytak, Tugba;Bulut, Osman
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • The plates made of two materials joined to each other having the different coefficient of thermal expansions are frequently encountered in the industrial applications. The stress analysis of these members under the effect of high-temperature variation has great importance in design. In this study, the stress analysis of the experimental model developed for the problem considered here was performed by the method of photothermoelasticity. The thermal strains were formed by the mechanical way and these were fixed by the strain freezing method. For the stress measurements, the method of slicing is applied which provides three-dimensional stress analysis. The analytical solution in the literature was compared with the related stress distribution obtained from the model. Moreover, the axisymmetric finite element model developed for the problem was solved by ABAQUS and the results obtained here compared with those of the experimental model and the analytical solution. As a result of this study, this experimental method and numerical model can be used for these type of thermal stress problems which have not been comprehensively analyzed yet.

Electrical Properties and Phase Transition Behavior of Lead-Free BaTiO3-Modified Bi1/2Na1/2TiO3-SrTiO3 Piezoelectric Ceramics (BaTiO3 첨가에 따른 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 전기적 특성 및 상전이 거동 연구)

  • Kang, Yubin;Park, Jae Young;Devita, Mukhllishah Aisyah;Duong, Trang An;Ahn, Chang Won;Kim, Byeong Woo;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.516-521
    • /
    • 2022
  • We investigated the microstructure, crystal structure, dielectric, and elecromechanical strain properties of lead-free BaTiO3 (BT)-modified (Bi1/2Na1/2)TiO3-SrTiO3 (BNT-ST) piezoelectric ceramics. Samples were prepared by a conventional ceramic processing route. Temperature dependent dielectric properties confirmed that a phase transition from a nonergodic relaxor to an ergodic relaxor was induced when the BT concentration reached 1.5 mol%, interestingly, where the average grain size reached a maximum value of 4.5 ㎛. At the same time, enhanced electromechanical strain (Smax/Emax = 600 pm/V) was obtained. It is suggested that the induced ferroelectric-relaxor phase transition by the BT modification is responsible for the enhancement of electromechanical strain in 1.5 mol% BT-modified BNT-ST ceramics.