• Title/Summary/Keyword: Strain Gradient Plasticity

검색결과 41건 처리시간 0.017초

다른 크기의 분말 적층을 통해 얻은 Fe-6%Mn합금의 경사 미세조직과 기계적 특성 (Gradient Microstructure and Mechanical Properties of Fe-6%Mn Alloy by Different Sized Powder Stacking)

  • 서남혁;이준호;신우철;전준협;박정빈;손승배;정재길;이석재
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.382-389
    • /
    • 2022
  • A typical trade-off relationship exists between strength and elongation in face-centered cubic metals. Studies have recently been conducted to enhance strength without ductility reduction through surface-treatment-based ultrasonic nanocrystalline surface modification (UNSM), which creates a gradient microstructure in which grains become smaller from the inside to the surface. The transformation-induced plasticity effect in Fe-Mn alloys results in excellent strength and ductility due to their high work-hardening rate. This rate is achieved through strain-induced martensitic transformation when an alloy is plastically deformed. In this study, Fe-6%Mn powders with different sizes were prepared by high-energy ball milling and sintered through spark plasma sintering to produce Fe-6%Mn samples. A gradient microstructure was obtained by stacking the different-sized powders to achieve similar effects as those derived from UNSM. A compressive test was performed to investigate the mechanical properties, including the yielding behavior. The deformed microstructure was observed through electron backscatter diffraction to determine the effects of gradient plastic deformation.

국부적 변형 집중 저감을 통한 액압 성형성 개선연구 (Enhancement of Hydroformability Through the Reduction of the Local Strain Concentration)

  • 신세계로;주병돈;문영훈
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.317-322
    • /
    • 2014
  • Bursting during tube hydroforming is preceded by localized necking. The retardation of the initiation of necking is a means to enhance hydroformability. Since high strain gradients occur at the necking sites, a decrease in local strain gradients is an effective way to retard the initiation of necking. In the current study, the expansion at potential necking sites was intentionally restricted in order to reduce the strain gradient at potential necking sites. From the strain distribution obtained from FEM, it is possible to determine strain concentrated zones, which are the potential necking sites. Prior to the hydroforming of a trailing arm, an incompressible material(such as lead) is attached to the tube where the strain-concentrated zone would contact the die. Due to the incompressibility of lead, the tube expansion is locally restricted, and the resultant strain extends to adjacent regions of the tube during hydroforming. After the first stage of hydroforming, the lead is removed from the tube, and the hydroforming continues to the final targeted shape without any local restriction. This method was successfully used to fabricate a complex shaped automotive trailing arm that had previously failed during traditional hydroforming fabrication.

레이저 용접 합체박판의 물성 및 성형성에 관한 연구 (Study on the Material Properties and Formabilities for the Tailored Blank Sheet Welded by Laser)

  • 박승우;구본영;백승준;금영탁;강수영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.32-35
    • /
    • 1998
  • The material properties and forrnabilities of tailored blanks are evaluated by experimental tests. In the tensile test, the gradient of strength coefficients of the heat affected zone associated with the welded line width represents the quality of a welded part. In the hemispherical dome punching test, the plane strain state of the welded line is observed. In the squared cupping test, the thin side is stretched more than the thick side in the stretch mode, while both sides are similarly stretched in the draw mode. In the 2D draw test, FLCo is measured in a simple manner and the forming defects of the tailored blanks with the same thickness are found.

  • PDF

아연도금강판의 성형한계도 (Forming Limit Diagrams of Zinc and Zinc Alloy Coated Steel Sheets)

  • 권재욱;이동녕;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.92-100
    • /
    • 1994
  • Forming limit diagrams for three different galvanized deep drawing quality steel sheets have been measured by hemispherical punch stretching. The experimental forming limit diagrams have been compared with results calculated using the shear instability criterion and the M-K model which takes into account a strain gradient effect resulting from bending (curvature) of a flat sheet by punch stretching. The measured data were in good agreement with the results calculated using exponent M value of 8 in Hosford's yield criterion for the M-K model and M= 6 for the shear instability model.

  • PDF

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링 (Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure)

  • 서영성;김용배
    • 대한기계학회논문집A
    • /
    • 제36권2호
    • /
    • pp.187-194
    • /
    • 2012
  • 일반적으로 복합재의 강도에 대한 크기 효과는 입자강화 알루미늄 복합재 제조시, 입자와 기지재를 압밀한 후 냉각할 때 입자와 기지재 사이의 열팽창계수 차에 의하여 기지재에 펀칭되는 기하적 필수 전위와, 변형 중 입자와 기지재사이의 탄소성 강성도 차로 인해 발생하는 변형률 구배 소성으로 인한 기하적 필수 전위가 주로 영향을 미치는 것으로 알려져 있다. 본 논문에서는 이러한 두 종류의 기하적 필수 전위를 전위 소성 이론에 입각하여 강도로 환산한 후 계층적으로 입자 주위 유한요소 영역에 할당하여 동일한 체적비에서 입자의 크기에 따라 변화하는 복합재의 파손 거동을 효과적으로 예측하였다. 이 방법을 적용함으로써 구형입자의 경우 간단한 축대칭 유한요소 모델링과 실험데이터를 연계하여 입자강화 복합재의 입자 크기 의존 강도 및 파손 효과를 수월하게 예측할 수 있음을 보였다. 또한 서로 다른 입자의 체적비 및 크기에 대하여SiC강화 알루미늄 2124-T4 복합재의 강도와 파손 거동이 분명한 차이가 있음을 보인다.

타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측 (Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning)

  • 천세호;유진영;이성호;이민수;전태성;이태경
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

가변 단면을 가지는 비대칭 얇은 관 부품의 액압성형 연구 (Hydroforming of a Non-axisymmetric Thin-walled Tubular Component with Variable Cross Sections)

  • 강형석;주병돈;황태우;문영훈
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.368-374
    • /
    • 2015
  • Hydroforming of a non-axisymmetric thin-walled tubular component with variable cross sections was analyzed. In order to solve the sealing problem which occurred due to the thin and non-axisymmetric shape, the use of a lead patch on the punch, which had been successful in hydroforming of thin tubes, was evaluated. A lead patch was attached to the punch to solve the sealing problem, which was caused by the stress gradient in the non-axisymmetric shape. FEM and experiments were also performed to analyze these sealing problems associated with the punch shape and non-axisymmetric shape. Finally, the lead patch was attached at tube surface where intensive local strain concentration would occur to enhance the hydroformability. These methods were successfully used to fabricate non-axisymmetric thin-walled tubular component with variable cross sections that had previously failed during traditional hydroforming.

크리프 물성평가를 위한 구형압입 수치접근법 (A Numerical Approach to Spherical Indentation Techniques for Creep Property Evaluation)

  • 임동규;이진행;최영식;이형일
    • 대한기계학회논문집A
    • /
    • 제37권10호
    • /
    • pp.1229-1237
    • /
    • 2013
  • 본 연구에서는 증분소성이론에 기초한 구형압입이론을 크리프 물성을 평가하기 위한 압입이론으로 확장했다. 먼저 크리프변형률 기울기가 일정한 지점을 유효 응력-변형률속도 최적 관측지점으로 선정했다. 구형압입시험 전산모사를 이용해 크리프 지수와 계수를 변화시켜 가면서 이에 따른 재료의 거동을 무차원 변수들 (${\xi}$, ${\psi}$)의 회귀식으로 표현해 크리프 물성평가를 위한 새로운 수치 접근법을 구축했다. 이를 토대로 구형압입시험으로부터 재료의 크리프지수 및 계수를 예측하는 물성평가 프로그램을 개발했다. 압입 하중-변위 곡선으로부터 크리프지수는 평균 1.5%, 크리프계수는 평균 1.0% 이내의 오차범위에서 물성치들을 얻을 수 있다.

The effects of temperature on the growth rate and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island Sound, USA

  • Gorman, Leah;Kraemer, George P.;Yarish, Charles;Boo, Sung Min;Kim, Jang K.
    • ALGAE
    • /
    • 제32권1호
    • /
    • pp.57-66
    • /
    • 2017
  • The red alga Gracilaria vermiculophylla, a species native to the waters of Korea and Japan, has invaded marine coastal areas of Europe and the Americas, thriving in conditions that differ from those of its native habitat. In recent years, G. vermiculophylla has been discovered in the Long Island Sound (LIS) estuary growing alongside the native congener Gracilaria tikvahiae. The goal of this study was to determine whether the two strains of G. vermiculophylla from different regions of the world have evolved genetic differences (i.e., ecotypic differentiation) or if the physiological performance of the strains simply reflects phenotypic plasticity. Two strains of G. vermiculophylla (isolated in Korea and LIS) and a strain of the LIS native G. tikvahiae were grown for four weeks under temperatures ranging from 20 to $34^{\circ}C$ using a temperature gradient table (all other environmental conditions were kept constant). At the end of each week, wet weight of each sample was recorded, and thalli were reduced to the original stocking density of $1gL^{-1}$ (excess biomass was preserved for tissue carbon and nitrogen analysis). Generally, the growth rates of Korean G. vermiculophylla > LIS G. vermiculophylla > G. tikvahiae. After one week of growth G. tikvahiae grew 9.1, 12.0, 9.4, and 0.2% $d^{-1}$, at temperatures of 20, 24, 29, and $34^{\circ}C$, respectively, while G. vermiculophylla (LIS) grew 6.6, 6.2, 5.7, and 3.6% $d^{-1}$. G. vermiculophylla (Korea) grew 15.4, 22.9, 23.2, and 10.1% $d^{-1}$, much higher than the two strains currently inhabiting the LIS. On average, the LIS G. vermiculophylla strain contained 4-5% DW N, while the Korean strain and G. tikvahiae had more modest levels of 2-3% N DW. However, tissue N content declined as temperature increased in LIS and Korean G. vermiculophylla. The non-native haplotype may have evolved genetic differences resulting in lower growth capacity while concentrating significantly more nitrogen, giving the non-native a competitive advantage.