• Title/Summary/Keyword: Storm runoff

Search Result 414, Processing Time 0.026 seconds

Estimation of Storm Hydrographs in a Small Forest Watershed Using a Distributed Hydrological Model (분포형 수문모형을 이용한 산림소유역의 홍수수문곡선의 추정)

  • Lee, Sang-Ho;Woo, Bo-Myeong;Im, Sang-Jun
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • This study was conducted to simulate storm hydrographs on a small forested watershed using TOPMODEL, which is a distributed hydrological model. The Myeongseong watershed, which is 58.3 ha in size, was selected to monitor rainfall and runoff data. The Monte Carlo simulation was also used to calibrate parameters of TOPMODEL. Six rainfall-runoff pairs collected at the watershed in the year 1997 were used for parameter calibration, and eight rainfall-runoff pairs collected during the period of $1998\sim1999$ were used for validation effort. The errors of runoff volume ranged from -2.74% to 1.81%, and an average value of model efficiency in terms of runoff volume was 0.92 for the calibration period. The average value of observed peak discharge was $0.324m^3\;s^{-1}$ for six rainfall-runoff pairs, while the prediction value was $0.295m^3\;s^{-1}$. The simulation errors of peak discharge varied according to rainfall characteristics and antecedent condition, within ranges of -27.65% to -1.13%. The model efficiency for the validation period was 0.92. For the validation period, observed peak discharges have an average value of $0.087m^3\;s^{-1}$ and average value of simulated peak discharge was $0.090m^3\;s^{-1}$. Observed and simulated values of time to peak for the calibration period were 18.3 hrs and 11.0 hrs, respectively, and 16.6 hrs and 13.5 hrs, respectively, for the validation period.

Estiation of Effective Rainall for Daily Streamfiow (장기유출 해석을 위한 유효우량 추정)

  • 김태철;안병기;박승기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.116-124
    • /
    • 1989
  • Based on the theory of runoff equation proposed by SCS, the actual storage capacity(Sa) as a modified retention paramater was introduced to estimate the effective rainfall for the daily streamfiow analysis. During a storm, the actual storage capacity is limited by either soil water storage or infiltration rate as precipitation increases. Therefore, it was assumed that Sa is dependent on the baseflow before storm runoff(Qb) corresponding to soil water storage and the total amount of precipitation(P) corresponding to infiltration rate of a watershed. Effective rainfalls (Direct run-offs) estimate4 from SCS equation using Sa were compared with observed effective rainfalls at 10 watersheds in Geum river watershed boundary. 1. Regression equation for Sa was supposed Sa=Co+C$_1$XP+C$_2$X Qb Regression coefficients were highly significant at the level of 0. 01 and R$^2$ were 0.57 to 0.73. 2. The adjustment of coefficient of initial abstraction was made according to the storm size. It was adjusted to 025 for 30mm or less, 0.23 for 30 to 80mm, 0.20 for 80 to 200mm, and 0.1 for 200mm or more. 3. Regression equations between estimated and observed effective rainfall showed that slopes were 0.857 to 1.029 and R$^2$ were 0.779 to 0.989,

  • PDF

Parameter Estimation of VfloTM Distributed Rainfall-Runoff Model by Areal Rainfall Calculation Methods - For Dongchon Watershed of Geumho River - (유역 공간 강우 산정방법에 따른 VfloTM 분포형 강우-유출 모형의 매개변수 평가 - 금호강 동촌 유역을 대상으로 -)

  • Kim, Si Soo;Jung, Chung Gil;Park, Jong Yoon;Jung, Sung Won;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This study is to evaluate the parameter behavior of VfloTM distributed rainfall-runoff model by applying 3 kinds of rainfall interpolation methods viz. Inverse Distance Weighting (IDW), Kriging (KRI), and Thiessen network (THI). For the 1,544 $km^2$ Dongcheon watershed of Nakdong river, the model was calibrated using 4 storm events in 2007 and 2009, and validated using 2 storm events in 2010. The model was calibrated with Nash-Sutcliffe model efficiency of 0.97 for IDW, 0.94 for KRI, and 0.95 for THI respectively. For the sensitive parameters, the saturated hydraulic conductivity ($K_{sat}$) for IDW, KRI, and THI were 0.33, 0.31, and 0.43 cm/hr, and the soil suction head at the wetting front (${\Psi}_f$) were 4.10, 3.96, and 5.19 cm $H_2O$ respectively. These parameters affected the infiltration process by the spatial distribution of antecedent moisture condition before a storm.

Runoff Analysis of Modified TOPMODEL with Subsurface Storm Flow Generation Mechanism (지표하 흐름을 고려한 개선된 TOPMODEL의 유출분석연구)

  • Lee, Hak-Su;Han, Ji-Yeong;Kim, Gyeong-Hyeon;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.403-411
    • /
    • 2001
  • This paper investigates the applicability of a modified version of TOPMODEL considering shallow subsurface storm flow in a forested mountaneous catchment. The macroporous soil structure provides a hydrological pathway for rapid runoff generation. A modified version of TOPMODEL introduces the two-storage system to analyze the hydrograph recession including rapid subsurface storm flow component. The two-month continuous hydrologic simulations of sulmachun watershed suggest that a modified version of TOPMODEL represents comprehensive and realistic flow generation mechanism comparing to those of an original version of TOPMODEL. The results of parameter calibration with Monte-Carlo method indicate a modified version of TOPMODEL produces a set of physically meaningful parameters.

  • PDF

Application of Grid-based Kinematic Wave Storm Runoff Model

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.20-27
    • /
    • 2000
  • The grid-based KIneMatic wave STOrm Runoff Model(Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of saturated overland flow, subsurface flow and stream flow was evaluated at two watersheds. this model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. the model programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS (Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

Application of Grid-based Kinematic Wave Storm Runoff Model

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.20-27
    • /
    • 2000
  • The grid-based KlneMatic wave STOrm Runoff Modei (Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of saturated overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS (Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

Simulation of Surface Flow and Soil Erosion on a Forest Road Using KINEROS2 Model

  • Im, Sang-Jun;Lee, Sang-Ho;Kim, Dong-Yeob
    • Journal of agriculture & life science
    • /
    • v.43 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • The physically based model KINEROS2 was applied to forest road segments for simulating hydrology and sediment production. Data on rainfall amounts, runoff volume, and sediment yields were collected at two small plots in the Yangpyong experimental watershed. The KlNEROS2 model can be parameterized to match the volume of surface flow and sediment yields during seven storm events. Model predictions of hydrology were in good agreement with the observed data at two plots in the year 1997 and 1998. A comparison between the observed and predicted sediment yields indicated that the model provided reasonable estimates, although the model tended to under-estimate for some storm events. The overall result shows that the KINEROS2 model properly represents the hydrology and sediment transport processes in the forest road segments.

The NPS Analysis and CSO Management Based on SWMM for Oncheon Basin (SWMM 모형을 이용한 비점오염 분석 및 CSO 관리방안 연구 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun Suk;Son, Jeong Hwa;Jang, Jong Kyung;Shon, Tae Seok;Kang, Dookee;Cho, Dukjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.268-280
    • /
    • 2009
  • Oncheon basin which are located in Busan is divided into 43 basin on the basis of main pipe, constructed with Storm Water Management Model (SWMM). Occurrence situation for Outflow and pollutant loads by long-term continuous rainfall is examined for treatment district and river analysis point of Oncheon basin and a reduction vs effectiveness table for effective CSOs managements is made for each of treatment districts according to each of managements. In case that treatment equipment is located at the discharge point of CSO, treatment efficiency is analysed. It is supposed that treatment equipment have an efficiency on the basis of a concentration and runoff discharge over a critical flow is discharged with it untreated and treating runoff discharge with treatment equipment at each of runoff discharge points and treating it gathered at sewage treatment plant (STP) through trunk sewer is compared for a relative treatment efficiency.

Design of a Data Model for the Rainfall-Runoff Simulation Based on Spatial Database (공간DB 기반의 강우-유출 모의를 위한 데이터 모델 설계)

  • Kim, Ki-Uk;Kim, Chang-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.1-11
    • /
    • 2010
  • This study proposed the method for the SWMM data generation connected with the spatial database and designed the data model in order to display flooding information such as the runoff sewer system, flooding areas and depth. A variety of data, including UIS, documents related to the disasters, and rainfall data are used to generate the attributes for flooding analysis areas. The spatial data is constructed by the ArcSDE and Oracle DB. The prototype system is also developed to display the runoff areas based on the GIS using the ArcGIS ArcObjects and spatial DB. The results will be applied to the flooding analysis based on the SWMM.

A Determination of Design Flood for a small Basin by Unit Hydrograph Method (단위유량도법에 의한 소유역의 계획홍수량 결정)

  • 윤용남;침순보
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.76-86
    • /
    • 1976
  • The 30-year design flood hydrograph for the Musim Representative Basin, one of the study basins of the International Hydrological Program, is synthesized by the method of unit hydrograph. The theory of unit hydrograph has been well known for a long time. However, the synthesis of flood hydrograph by this method for a basin with insufficient hydrologic data is not an easy task and hence, assumptions and engineering judgement must be exercized. In this paper, the problems often encountered in applying the unit hydrograph method are exposed and solved in detail based on the theory and rational judgement. The probability rainfall for Cheonju Station is transposed to the Musim Basin since it has not been analyzed due to short period of rainfall record. The duration of design rainfall was estimated based on the time of concentration for the watershed. The effective rainfall was determined from the design rainfall using the SCS method which is commonly used for a small basin. The spatial distribution of significant storms was expressed as a dimensionless rainfall mass curve and hence, it was possible to determine the hyetograph of effective design storm. To synthesize the direct runoff hydrograph the 15-min. unit hydrograph was derived by the S-Curve method from the 1-hr unit hydrograph which was obtained from the observed rainfall and runoff data, and then it was applied to the design hyetograph. The exsisting maximum groundwater depletion curve was derived by the base flow seperation. Hence, the design flood hydrograph was obtained by superimposing the groundwater depletion curve to the computed direct runoff hydrograph resulting from the design storm.

  • PDF