• Title/Summary/Keyword: Storage type

Search Result 1,982, Processing Time 0.032 seconds

An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe (열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향)

  • Pak, Ee-Tong;Jeong, Un-Chul
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.39-47
    • /
    • 1996
  • The horizontal thermal storage tank with heat pipe which is suitable for the sensible heat storage system is able to store a hot water from the heat source such as heating pad efficiently and to supply a hot water to load rapidly. And arrangement of heating pad play an important role in thermal flow and thermal storage efficiency. In this experiments, number of heating pad is ranged from three, five and nine, and when there is no change on number of heating pad, arrangements are two types of concentration-type and dispersion-type. Strong entrainment take place in the case of concentration-type of heating pad, and rapid temperature rise(${\Delta}{\doteqdot}1.6{\sim}3.2^{\circ}C$) in the tank is obtainable on the concentration-type than dispersion-type. In the constant number of heating pad, the concentration-type has the higher efficiency with about $5{\sim}6%$ than the dispersion-type Therefore, concentration-type of heating pad is an efficient design in constant number of heating pad.

  • PDF

An Experimental Study on Heat Storage and Heat Recovery Characteristics of a Latent Heat Storage Tank with Horizontal Shell and Tube Type (수평식 셸-튜브형 잠열축열조의 축열 및 방열특성에 관한 실험적 연구)

  • Kwon, Young-Man;Seo, Hye-Sung;Moh, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.50-59
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat exchanger consisted of horizontal cylindrical capsules with a staggered tube bank layout. Based on the obtained data, the effects of flow rate and inlet fluid temperature on the melting time and heat storage rates were examined. It is found that the melting time decreased with increase of the flow rate and the inlet temperature. Results also show that at the initial stage of heat transfer the heat storage rate represents the maximum value and rapidly decreases.

A Study on the Heat Storage Characteristics of a Latent Heat Storage Tank with Shell and Tube Type (셀-튜브형 잠열축열조의 축열특성에 관한 연구)

  • 권영만;김경우;모정하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.745-754
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat storage tank consists of cylindrical capsules with a staggered tube bank. The effects of flow rates and initial temperature differences on the melting time and heat storage rates are examined. It is found that the melting time decreases with increase of the flow rates and initial temperature differences. Results also show that the time-averaged overall heat transfer coefficients increase in proportion to the increase of flow rates and initial temperature differences.

  • PDF

Study on Design Method of Tunnel-type Ammunition Storage Chamber (터널형 탄약고의 격실 설계 방법에 대한 연구)

  • Park, Sangwoo;Baek, Jangwoon;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • Recently, the demand for underground-type ammunition storage facilities has increased. Comparing with a ground-type ammunition storage facility, the underground-type ammunition storage facility can decrease the standard of safety distance because fragment and blast wave can be locked in the rock formation. However, the absence of a design method on the underground-type ammunition storage chamber became a major setback for the construction promotion. In this study, the process for designing an overall configuration of the underground-type ammunition storage facility was provided. First, the determination method for configuration and number of the chamber was developed by performing the ammunition storage simulation. Then, a tunnel (i.e., transfer channel for vehicles) and designed chambers can be arranged on the basis of safety distance standard. The safety distance standard also should be considered for determining the location and the size of entrances because of the blast wave and fragment effect at the entrances when an explosion is generated inside a chamber. In addition, considerations on the design for the waterproof and the drainage of subsurface water were analyzed through construction cases. Finally, an example of designing underground-type ammunition storage chambers was provided in order to verify the developed design process.

A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages (암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2013
  • A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.

A Comparative Study on Carbon Storage and Physicochemical Properties of Vegetation Soil for Extensive Green Rooftop Used in Korea (국내 저관리 경량형 옥상녹화용 식생기반재의 이화학적 특성 및 탄소고정량 비교 분석)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Jang, Seong-Wan;Lee, Hang-Goo;Park, Hwan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.115-125
    • /
    • 2015
  • This study was carried out to analyze comparison of carbon storage and physicochemical properties of vegetation soil for extensive green rooftop established at Seoul National University in september 2013. For this study, 42 plots were made by 2 kinds of vegetation soil including A-type and B-type. A-type vegetation soil plots were made of 90% perlite and 10% humus and B-type vegetation soil plots were made of 60% perlite, 20% vermiculite, 10% coco peat and 10% humus. This study used 6 kinds of plants which are Aster koraiensis, Sedum takesimense, Zoysia japonica Steud, Euonymus japonica, Rhododendron indicum SWEET and Ligustrum obtusifolium. Field research was carried out in 11 months after planting. Physiochemical properties of B-type vegetation soil plots were better than A-type vegetation soil plots in every way and soil carbon content was also higher at B-type vegetation soil plots as well. B-type vegetation soil plots were maintained 10 to 20% higher soil water content than A-type vegetation soil plots of the study period. The species of herb which showed the best carbon storage was Zoysia japonica Steud at B-type vegetation soil plots. The species of shrub which showed the best carbon storage was Ligustrum obtusifolium at B-type vegetation soil plots. Plants generally showed better growth at B-type vegetation soil plots and B-type vegetation soil plots were higher than A-type vegetation soil plots in soil carbon stock.

Preliminary Studies on the Quality Changes of Eggplant as Influenced by Active Packaging

  • Zuo, Li;Seog, Eun-Ju;Lee, Jun-Ho;Rhim, Jong-Whan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.66-73
    • /
    • 2006
  • The effects of active packaging on the surface stiffness, mass, volume, density and weight changes of fresh as well as stored eggplant were studied at 11 and $25^{\circ}C$ for 10 days with active packaging material Type 1 and 2 and control. Mass, volume, and surface stiffness of eggplant decreased linearly throughout the storage period regardless of storage conditions; while the mass density showed a reverse trend in the ease of $11^{\circ}C$ storage. Reduction rate of mass, mass density and weight was observed minimum at $25^{\circ}C$ storage temperature with active packaging Type 1. The weight of eggplant decreased at a higher rate in the initial 4 days compared to that in the later period of storage regardless of storage temperature and type of packaging.

A Study on the Conveying Characteristic Analysis of Straight Type Sweeping Auger for Development of Combined Grain Drying and Storage System (일체형 곡물 건조/저장 시스템 개발을 위한 Straight Type Sweeping Auger의 이송 특성 분석에 관한 연구)

  • Choi, Kab-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.521-528
    • /
    • 2009
  • This study verify the conveying characteristic and adaptability of Straight Type Seeping Auger(STSA) which is built in Combined Grain Drying and Storage System(CGDSS). It is very important to design sweeping auger which makes Combined Grain Drying and Storage System having First-In-First-Out. In order to suggest desirable idea for sweeping auger of Combined Grain Drying and Storage System, an experiment that behavior of grain on the boundary surface which is made by rotation of STSA is executed and causalities to be given problem of STSA are pointed out.

Effect of Storage Conditions, Rice, Cooker and Oil Types on the Changes of Resistant Starch Contents of Cooked Rice (저장조건, 쌀, 조리기구와 유지 종류가 밥의 저항전분 함량 변화에 미치는 영향)

  • Ren, Chuanshun;Kim, Ji Myoung;Park, Sara;Jeong, On Bit;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The changes of resistant starch (RS) contents of cooked rice with soybean and coconut oils under different storage conditions were investigated and RS contents were compared between the rice and cooker types. The japonica (Hopyeong) and the indica (Thailand) type rice were cooked (washed rice: water = 100: 130) using an electric cooker and a saucepan. The coconut oil and soybean oil (3%, based on rice, w/w) were added into cooking water before heating. The RS contents of freeze-dried cooked rice powders (newly-cooked rice, stored for 12 h in the refrigerator, microwave heating after storage for 12 h in the refrigerator) were measured by the AOAC method. The RS contents of cooked rice using a saucepan were higher than those using an electric cooker. The indica type cooked rice had a higher RS content than the japonica type cooked rice, regardless of storage conditions. However, addition of oil before cooking rice resulted in increased RS content on storage in the refrigerator. The highest RS content of the cooked indica type rice with soybean oil ($5.89{\pm}0.22%$) that was stored for 12 h in the refrigerator was analyzed. The results suggested that the cooked rice formed retrograded (RS3) and amylose-lipid complex (RS5) type RS; furthermore, the RS content is affected by storage conditions, rice, cooker and oil types.

Study on the optimal storage-capacity based on the commodity volume in apartments - Focused on $85m^2$ apartment - (물품부피에 근거한 적정수납용적에 관한 연구 - 30평형대 아파트를 중심으로 -)

  • Lee, Youn-Jae;Kim, Joon-Ji;Lee, Hyun-Soo
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.139-149
    • /
    • 2006
  • Because of economic growth and the social trend to respect individuality, people's average commodity volume tends to increase. It makes people perceive the importance of storage space. The storage planning without consideration of commodity volume in the apartment can not satisfy the needs of residents. This study is developed focused on the $85m^2$ apartment which is the most representative and general type. The objectives of the study are to investigate the storage-capacity of $85m^2$ apartment offered by 4 construction companies to know the present storage condition, to investigate the average volumes and type of commodities in 30 families located in Seoul and Kyungkido to produce the necessary storage-capacity, and lastly to produce optimal storage-capacity and proportion of optimal storage-capacity considering the volume of the furniture owned by each resident. The results of the study are 1) the storage capacity for commodity volume in $85m^2$ apartment is $19.41m^3$. 2) the optimal storage-capacity which only counts the storage volume of built-in furniture is $17.14m^3$ 3) the proportion of optimal storage-capacity is 9.5% of the house-capacity.