• Title/Summary/Keyword: Storage capacity of battery

Search Result 234, Processing Time 0.03 seconds

Calculating the Optimal Capacity of Battery Storage System for Power System in Je-Ju (제주지역 전력계통에 설치되는 배터리 저장장치의 최적용량 산정)

  • Lee, Jong-Hyun;Nam, Young-Woo;Ko, Won-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.8-14
    • /
    • 2010
  • In this Paper, optimal capacity of battery storage in Je-Ju is calculated. First, Electricity demand data of Je-Ju('06~'16) is estimated based on real electricity demand data of Je-Ju('06~'07). Then, the 4th power supply planning is used to calculate benefits from battery storage capacity in view of maximum power savings, preventing outages savings and energy charge fee reduction. Finally, optimal battery storage capacity is suggested.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Smooth Wind Power Fluctuation Based on Battery Energy Storage System for Wind Farm

  • Wei, Zhang;Moon, Byung Young;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2134-2141
    • /
    • 2014
  • This paper addresses on a wind power system with BESS(Battery Energy Storage System). The concerned system consists of four parts: the wind speed production model, the wind turbine model, configure capacity of the battery energy storage, battery model and control of the BESS. First of all, we produce wind speed by 4-component composite wind speed model. Secondly, the maximum available wind power is determined by analyzing the produced wind speed and the characteristic curve of wind power. Thirdly, we configure capacity of the BESS according to wind speed and characteristic curve of wind speed-power. Then, we propose a control strategy to track the power reference. Finally, some simulations have been demonstrated to visualize the feasibility of the proposed methodology.

Capacity Firming for Wind Generation using One-Step Model Predictive Control and Battery Energy Storage System

  • Robles, Micro Daryl;Kim, Jung-Su;Song, Hwachang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2043-2050
    • /
    • 2017
  • This paper presents two MPC (Model Predictive Control) based charging and discharging algorithms of BESS (Battery Energy Storage System) for capacity firming of wind generation. To deal with the intermittency of the output of wind generation, a single BESS is employed. The proposed algorithms not only make the output of combined systems of wind generation and BESS track the predefined reference, but also keep the SoC (State of Charge) of BESS within its physical limitation. Since the proposed algorithms are both presented in simple if-then statements which are the optimal solutions of related optimization problems, they are both easy to implement in a real-time system. Finally, simulations of the two strategies are done using a realistic wind farm library and a BESS model. The results on both simulations show that the proposed algorithms effectively achieve capacity firming while fulfilling all physical constraints.

A Study on Optimal Capacity of Energy Storage System in Renewable Energy Based Micorgrids (신재생에너지가 연계된 마이크로그리드에서 에너지 저장장치의 최적 용량 선정에 관한 연구)

  • Kim, Wook-Won;Lee, Nam-Hyung;Lee, Yun-Sung;Shin, Je-Seok;Kim, Jin-O
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.529-533
    • /
    • 2012
  • By introducing RPS(Renewable Portfolio Standard) for reduction of greenhouse gas, Renewable energy sources have becoming widespread gradually. However, Renewable energy sources, such as wind power and PV are difficult to control the output and they have intermittent characteristics of the output. These characteristics would cause some problems when it is connected in the power system. In order to solve these problems, Energy Storage Systems(ESS) are considered to use. Although there are many different storage devices, the utilization of Secondary Battery is the one of the best ways to stabilize an output fluctuation of RES because of its fast responsibility. For that reason, it would better fit a large-capacity of Secondary battery for stabilization. However, batteries cannot be installed with a large capacity blindly because of its expensive cost. So to select proper capacity of the battery is an important consideration. This paper presented a methodology for the optimal capacity and operation of ESS in microgrids.

  • PDF

Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System (에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

Sodium Sulfur Battery for Energy Storage System (대용량 에너지 저장시스템을 위한 나트륨 유황전지)

  • Kim, Dul-Sun;Kang, Sungwhan;Kim, Jun-Young;Ahn, Jou-Hyeon;Lee, Chang-Hui;Jung, Keeyoung;Park, Yoon-Cheol;Kim, Goun;Cho, Namung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.111-122
    • /
    • 2013
  • Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.

A Study on Mathematical Modeling of Battery Energy Storage Systems using PSCAD/EMIDC (PSCAD/EMTDC를 이용한 전지전력저장시스템의 수리모형에 관한 연구)

  • Kim, Eung-Sang;Kim, Jae-Eun;Rho, Dae-Seok;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1035-1037
    • /
    • 1997
  • This paper deals with the mathematical modeling of battery energy storage systems interconnected with the distribution system. This battery model takes account of self-discharge, battery storage capacity, internal resistance and overvoltage. The model components are decided by using an approximation technique and experimental results. This model can be used to evaluate battery performance of battery energy storage systems interconnected with distribution system.

  • PDF

Lithium-ion Stationary Battery Capacity Sizing Formula for the Establishment of Industrial Design Standard

  • Chang, Choong-koo;Sulley, Mumuni
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2561-2567
    • /
    • 2018
  • The extension of DC battery backup time in the DC power supply system of nuclear power plants (NPPs) remains a challenge. The lead-acid battery is the most popular at present. And it is generally the most popular energy storage device. However, extension of backup time requires too much space. The lithium-ion battery has high energy density and advanced gravimetric and volumetric properties. The aim of this paper is development of the sizing formula of stationary lithium-ion batteries. The ongoing research activities and related industrial standards for stationary lithium-ion batteries are reviewed. Then, the lithium-ion battery sizing calculation formular is proposed for the establishment of industrial design standard which is essential for the design of stationary batteries of nuclear power plants. An example of calculating the lithium-ion battery capacity for a medium voltage UPS is presented.

Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method (배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정)

  • Kim, Hye Rim;Kim, Tong Seop
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.34-36
    • /
    • 2021
  • The interest in renewable energy-based distributed power generation systems is increasing due to the recognitions of the breakthrough of existing centralized power generation, energy conversion, and environmental problems. In this study, the optimal capacity was selected by simulating a distributed power generation system based on PV and WT using lead acid batteries as the energy storage system. CHP was adopted as the existing power source, and the optimal capacity of the system was derived through MOGA according to the operating modes(full load/part load) of the existing power source. In addition, it was confirmed that the battery life differs when the battery charging method is changed at the same battery capacity. Therefore, for economical and stable power supply and demand, the capacity selection of the distributed generation system considering the battery charging method should be performed.